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Abstract: This article presents a perishable stochastic inventory system under
continuous review at a service facility consisting of two parallel queues with
jockeying. Each server has its own queue, and jockeying among the queues
is permitted. The capacity of each queue is of finite size L. The inventory is
replenished according to an (s,S) inventory policy and the replenishing times
are assumed to be exponentially distributed. The individual customer is issued
a demanded item after a random service time, which is distributed as negative
exponential. The life time of each item is assumed to be exponential. Customers
arrive according to a Poisson process and on arrival; they join the shortest feasible
queue. Moreover, if the inventory level is more than one and one queue is empty
while in the other queue, more than one customer are waiting, then the customer
who has to be received after the customer being served in that queue is transferred
to the empty queue. This will prevent one server from being idle while the
customers are waiting in the other queue. The waiting customer independently



reneges the system after an exponentially distributed amount of time. The joint
probability distribution of the inventory level, the number of customers in both
queues, and the status of the server are obtained in the steady state. Some
important system performance measures in the steady state are derived, so as the
long-run total expected cost rate.

Keywords: Markov process, Continuous review, Inventory with service time, Perishable
commodity, Shortest queue, Jockeying and impatient.
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1. INTRODUCTION

Research on queueing systems with inventory control has captured much at-
tention of researchers over the last decades. In this system, customers arrive at the
service facility one by one and require service. In order to complete the customer
service, an item from the inventory is needed. A served customer departs immedi-
ately from the system and the on - hand inventory decreases by one at the moment
of service completion. This system is called a queueing - inventory system [11].
Berman and Kim [4] analyzed a queueing - inventory system with Poisson ar-
rivals, exponential service times and zero lead times. The authors proved that the
optimal policy is never to order when the system is empty. Berman and Sapna [5]
studied queueing - inventory systems with Poisson arrivals, arbitrary distribution
service times and zero lead times. The optimal value of the maximum allowable
inventory which minimizes the long - run expected cost rate has been obtained.

Berman and Sapna [6] discussed a finite capacity system with Poisson arrivals,
exponential distributed lead times and service times. The existence of a station-
ary optimal service policy has been proved. Berman and Kim [7] addressed an
infinite capacity queueing - inventory system with Poisson arrivals, exponential
distributed lead times and service times. The authors identified a replenishment
policy which maximized the system profit. Berman and Kim [8] studied internet
based supply chains with Poisson arrivals, exponential service times, the Erlang
lead times and found that the optimal ordering policy has a monotonic threshold
structure.

The study on multiserver queueing-inventory systems generally assumes the
servers to be homogeneous in which the individual service rates are the same for
all the servers in the system. This assumption may be valid only when the service
process is mechanically or electronically controlled. The multiserver queueing-
inventory systems with homogeneous servers are also widely studied. For a
related bibliography see [14, 15]. In a queueing-inventory system with human
servers, the above assumption can hardly be realized. It is common to observe
server rendering service to identical jobs at different service rates. This reality
leads to modelling such multiserver queueing-inventory systems with heteroge-
neous servers, i.e., the service time distributions may be different for different
servers. In the case of perishable queueing-inventory system with two hetero-
geneous servers including one with unreliable server and repeated attempts, the
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first paper was by Yadavalli et.al [16] who assumed the exponential life time for
the items, exponential lead time for the supply of the ordered items and exponen-
tial retrial rate for the customers in the orbit.

In this paper, we consider a queueing-inventory system consisting of two
parallel queues with jockeying and different server rates. The concept of jock-
eying is one of the important customer strategies. It refers to the movements of
customers who have the option of switching from one queue to another when
several servers, each having a separate and distinct queue, are available. The
shortest queue problems with jockeying, but not assuming stochastic inventory
management, have been widely studied by many researchers in the past. For the
theory of shortest queueing problems with/ without jockeying, the often quoted
articles are Haight [10], Zhao and Grassman [18], Adan et.al [1, 2, 3], Cohen [9],
Van Houtum et.al [13], Yao and Knessl [17] and Tarabia [12].

The rest of this paper is organized as follows. In the next section, the math-
ematical model and the notations used in this paper are described. Analysis of
the model and the steady state solutions of the model are obtained in section 3.
Some key system performance measures are derived in section 4. In section 5, we
calculate the total expected cost rate, and in the section 6, we present sensitivity
analysis numerically. The last section is meant for conclusion.

2. MODEL DESCRIPTION

In this paper, stochastic queueing-inventory systems with the following as-
sumptions are investigated.

Consider a continuous review perishable inventory system with two queues
in parallel and jockeying. Maximum inventory level is denoted by S and the in-
ventory is replenished according to (s,S) ordering policy. According to this policy,
the reorder level is fixed as s ≥ 2 and an order is placed when the inventory level
reaches the reorder level. The ordering quantity is Q(= S − s > s + 1) items. The
condition S− s > s + 1 ensures that no perpetual shortage in the stock after replen-
ishment. The lead time is assumed to be exponential with parameter β(> 0). The
life time of the commodity is assumed to be distributed as negative exponential
with parameter γ(> 0). We have assumed that an item of inventory that makes
it into the service process cannot perish while in service. The queuing-inventory
system consists of two parallel servers (server-1 and server-2) with different ser-
vice rates µ1 and µ2, respectively. The arrival of customers is assumed to form a
Poisson process with parameter λ(> 0). The capacity of each queue is restricted
to L including the one being served.

An arriving customer joins the shortest queue, if both queues are equal, he
chooses a first queue with probability p or second with q, where p + q = 1. The
waiting customers receive their service one by one. The demand is for a sin-
gle item per customer. The demanded item is delivered to the customer after a
random time of service. The moment any server becomes idle, if the inventory
level is more than one (including the servicing item) and if there is a customer
waiting in the other queue, the customer immediately following the customer
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who is receiving service at that counter is transferred to the idle server queue. An
impatient customer leaves the system independently after a random time which
is distributed as negative exponential with parameter α1(> 0) if the customer
leaves from queue-1, and α2(> 0) if the customer leaves from queue-2. Note that
in this model we have assumed that the servicing customer can not be impatient.
Any arriving customer who finds that both queues are full is considered to be
lost. Various stochastic processes involved in the system are independent of each
other.

2.1. Notations:

e : A column vector of appropriate dimension containing all ones,
0 : Zero matrix of appropriate dimension,

[A]i j : Entry at (i, j)th position of a matrix A,

δi j :
{

1 if j = i,
0 otherwise,

δ̄i j : 1 − δi j,

k ∈ V j
i : k = i, i + 1, . . . j,

H(x) :
{

1 if x ≥ 0,
0 if x < 0,

I : Identity matrix,
Ik : An Identity matrix of order k.

3. ANALYSIS

Let L(t), Y(t), X1(t) and X2(t), respectively, denote the inventory level, the
server status, the number of customers in queue-1, and the number of customers
in queue-2 at time t.

Further, let the status of the server Y(t) be defined as follows:

Y(t) =


S00, if both the servers are idle at time t,
S10, if server-1 is busy and server-2 is idle at time t,
S01, if server-1 is idle and server-2 is busy at time t,
S11, if both the servers are busy at time t.

From the assumptions made on the input and output processes, it can be shown
that the quadruplet {(L(t),Y(t),X1(t),X2(t)), t ≥ 0} is a continuous time Markov
chain with discrete state space given by

E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5 ∪ E6 ∪ E7,
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where,

E1 : {(0,S00, i3, i4) | i3 = 0, 1, 2, . . . ,L; i4 = 0, 1, 2, . . . ,L},
E2 : {(i1,S00, 0, 0) | i1 = 1, 2, . . . ,S},
E3 : {(1,S10, i3, i4) | i3 = 1, 2, . . . ,L; i4 = 0, 1, 2, . . . ,L},
E4 : {(1,S01, i3, i4) | i3 = 0, 1, 2, . . . ,L; i4 = 1, 2, . . . ,L},
E5 : {(i1,S10, 1, 0) | i1 = 2, 3, . . . ,S},
E6 : {(i1,S01, 0, 1) | i1 = 2, 3, . . . ,S},
E7 : {(i1,S11, i3, i4) | i1 = 2, 3, . . . ,S; i3 = 1, 2, . . . ,L; i4 = 1, 2, . . . ,L}.

Define the following ordered sets:

< i1, i2, i3 > =



((i1,S00, i3, 0), (i1,S00, i3, 1), . . . , (i1,S00, i3,L)) , i1 = 0; i3 = 0, 1, . . . ,L;
((i1,S00, i3, 0)) , i1 = 1, 2, . . . ,S; i3 = 0;
((i1,S10, i3, 0), (i1,S10, i3, 1), . . . , (i1,S10, i3,L)) , i1 = 1; i3 =, 1, . . . ,L;
((i1,S01, i3, 1), (i1,S01, i3, 2), . . . , (i1,S01, i3,L)) , i1 = 1; i3 = 0, 1, . . . ,L;
((i1,S10, i3, 0)) , i1 = 2, 3, . . . ,S; i3 = 1;
((i1,S01, i3, 1)) , i1 = 2, 3, . . . ,S; i3 = 0;
((i1,S11, i3, 1), (i1,S11, i3, 2), . . . , (i1,S11, i3,L)) , i1 = 2, 3, . . . ,S; i3 = 1, 2, . . . ,L;

� i1, i2 � =



< i1,S00, 0 >,< i1,S00, 1 >, . . . , < i1,S00,L >, i1 = 0;
< i1,S00, 0 >, i1 = 1, 2, . . . ,S;
< i1,S10, 1 >,< i1,S10, 2 >, . . . , < i1,S10,L >, i1 = 1;
< i1,S01, 0 >,< i1,S01, 1 >, . . . , < i1,S01,L >, i1 = 1;
< i1,S10, 1 >,< i1,S01, 0 >, i1 = 2, 3, . . . ,S;
< i1,S11, 1 >,< i1,S11, 2 >, . . . , < i1,S11,L >, i1 = 2, 3, . . . ,S;

≪ i1 ≫ =


� i1,S00 �, i1 = 0;
� i1,S00 �, i1 = 1, 2, . . .S;
� i1,S10 �,� i1,S01 �, i1 = 1;
� i1,S10 �,� i1,S01 �,� i1,S11 �, i1 = 2, 3, . . .S;

By ordering the state space (≪ 0≫,≪ 1≫, . . . ,≪ S≫) , the infinitesimal
generator Θ can be conveniently written in a block partitioned matrix with entries

Θ =



≪ 0≫ ≪ 1≫ ≪ 2≫ · · · ≪ S − 1≫ ≪ S≫
≪ 0≫ A0,0 A0,1 A0,2 · · · A0,S−1 A0,S
≪ 1≫ A1,0 A1,1 A1,2 · · · A1,S−1 A1,S
≪ 2≫ A2,0 A2,1 A2,2 · · · A2,S−1 A2,S

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
≪ S − 1≫ AS−1,0 AS−1,1 AS−1,2 · · · AS−1,S−1 AS−1,S
≪ S≫ AS,0 AS,1 AS,2 · · · AS,S−1 AS,S


More explicitly, due to the assumptions made on the demand and replenishment
processes, we note that

Ai1, j1 = 0, for j1 , i1, i1 − 1, i1 + Q.
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We first consider the case Ai1,i1+Q. This will occur only when the inventory
level is replenished.

Case (1) First we consider the inventory level to be zero, that is A0,Q. For this

Case (1a) Let i2 = S00, i3 = 0 and i4 = 0.
At the time of replenishment, the state of the system changes from (0,S00, 0, 0)
to (Q,S00, 0, 0), with intensity of transition β. The sub matrix of the transition
rates from� 0,S00 � to� Q,S00 �, is given by

[C(1)
0 ]i3 j3 =

{
C(11)

0 , j3 = i3, i3 = 0,
0, otherwise,

where

[C(11)
0 ]i4 j4 =

{
β, j4 = i4, i4 = 0,
0, otherwise,

Case (1b) Let i2 = S00, i3 = 0 and i4 = 1.
Replenishment of inventory takes the system state from (0,S00, 0, 1) to (Q,S01, 0, 1),
with intensity of transition β. The sub matrix of the transition rates from
� 0,S00 � to� Q,S01 � is given by

[C(2)
0 ]i3 j3 =

{
C(21)

0 , j3 = i3, i3 = 0,
0, otherwise,

where

[C(21)
0 ]i4 j4 =

{
β, j4 = i4, i4 = 1,
0, otherwise,

Case (1c) Let i2 = S00, i3 = 1 and i4 = 0.
When a replenishment takes place at (0,S00, 1, 0), the inventory level reaches
to (Q,S10, 1, 0), with intensity of transition β. The sub matrix of the transition
rates from� 0,S00 � to� Q,S10 � is given by

[C(3)
0 ]i3 j3 =

{
C(31)

0 , j3 = i3, i3 = 1,
0, otherwise,

where

[C(31)
0 ]i4 j4 =

{
β, j4 = i4, i4 = 0,
0, otherwise,
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Case (1d) • Let i2 = S00, 1 ≤ i3 ≤ L and i4 = 0.
When the inventory level is replenished, the state of the system changes
from (0,S00, i3, i4) to (Q,S11, i3, i4), i3 ∈ VL

1 , i4 ∈ VL
1 , with intensity of

transition β.

• Let i2 = S00, i3 = 0 and 2 ≤ i4 ≤ L.
Replenishment changes the system state from (0,S00, 0, i4) to (Q,S11, 1, i4−
1), i4 ∈ VL

2 , with intensity of transition β.

• Let i2 = S00, 2 ≤ i3 ≤ L and 1 ≤ i4 ≤ L.
A transition from (0,S00, i3, 0) to (Q,S11, i3 − 1, 1), Q = S − s for i3 ∈ VL

2 ,
takes place with intensity β when a replenishment for Q items occur.
The sub matrix of this transition rates from� 0,S00,� to� Q,S11,�
is given by

[C(4)
0 ]i3 j3 =


C(41)

0 , j3 = 1, i3 = 0,
C(42)

0 , j3 = i3, i3 ∈ VL
1 ,

C(43)
0 , j3 = i3 − 1, i3 ∈ VL

2 ,
0, otherwise,

where

[C(41)
0 ]i4 j4 =

{
β, j4 = i4 − 1, i4 ∈ VL

2 ,
0, otherwise,

[C(42)
0 ]i4 j4 =

{
β, j4 = i4, i4 ∈ VL

1 ,
0, otherwise,

[C(43)
0 ]i4 j4 =

{
β, j4 = 1, i4 = 0,
0, otherwise,

Hence,

[A0,Q]i2 j2 =



C(1)
0 , j2 = i2, i2 = S00,

C(2)
0 , j2 = S01, i2 = S00,

C(3)
0 , j2 = S10, i2 = S00,

C(4)
0 , j2 = S11, i2 = S00,

0, otherwise,

We denote A0,Q as C0.

Case (2) We now consider that the inventory level is one, that is A1,1+Q. We note
that for this case only, the inventory level changes from 1 to 1 + Q.

Case (2a) Let i2 = S00, i3 = 0 and i4 = 0.
At the time of replenishment, the system state change from (1,S00, 0, 0) to
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(1+Q,S00, 0, 0), with intensity of transition β.The sub matrix of the transition
rates from� 1,S00 � to� 1 + Q,S00 � is given by

[C(1)
1 ]i3 j3 =

{
C(11)

1 , j3 = i3, i3 = 0,
0, otherwise,

where

[C(11)
1 ]i4 j4 =

{
β, j4 = i4, i4 = 0,
0, otherwise,

Case (2b) Let i2 = S01, i3 = 0 and i4 = 1.
Replenishment of inventory takes the system state from (1,S01, 0, 1) to (1 +
Q,S01, 0, 1), with intensity of transition β. The sub matrix of the transition
rates from� 1,S01 � to� 1 + Q,S01 � is given by

[C(2)
1 ]i3 j3 =

{
C(21)

1 , j3 = i3, i3 = 0,
0, otherwise,

where

[C(21)
1 ]i4 j4 =

{
β, j4 = i4, i4 = 1,
0, otherwise,

Case (2c) Let i2 = S10, i3 = 1 and i4 = 0.
Replenishment changes the state of the system from (1,S10, 1, 0) to (1 +
Q,S10, 1, 0), with intensity of transition β. The sub matrix of the transition
rates from� 1,S10 � to� 1 + Q,S10 � is given by

[C(3)
1 ]i3 j3 =

{
C(31)

1 , j3 = i3, i3 = 1,
0, otherwise,

where

[C(31)
1 ]i4 j4 =

{
β, j4 = i4, i4 = 0,
0, otherwise,

Case (2d) • Let i2 = S01, i3 = 0 and 2 ≤ i4 ≤ L.
The state of the system moves from (1,S01, 0, i4) to (1 + Q,S11, 1, i4 − 1),
i4 ∈ VL

2 , with the intensity of transition β due to replenishment.

• Let i2 = S01, 1 ≤ i3 ≤ L and 1 ≤ i4 ≤ L.
When a replenishment takes place at (1,S01, i3, i4), the inventory level
reaches to (1 + Q,S11, i3, i4), i3 ∈ VL

1 , i4 ∈ VL
1 , with intensity of transition

β.
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The sub matrix of these transition rates from � 1,S01 � to � 1 +
Q,S11 � is given by

[C(4)
1 ]i3 j3 =


C(41)

1 , j3 = 1, i3 = 0,
C(42)

1 , j3 = i3, i3 ∈ VL
1 ,

0, otherwise,

where

[C(41)
1 ]i4 j4 =

{
β, j4 = i4 − 1, i4 ∈ VL

2 ,
0, otherwise,

[C(42)
1 ]i4 j4 =

{
β, j4 = i4, i4 ∈ VL

1 ,
0, otherwise,

Case (2e) • Let i2 = S10, 1 ≤ i3 ≤ L and 1 ≤ i4 ≤ L.
A transition from (1,S10, i3, i4) to (1 + Q,S11, i3, i4), Q = S− s, for i3 ∈ VL

1 ,
i4 ∈ VL

1 ,takes place with intensity β when a replenishment for Q items
occur.

• Let i2 = S10, 2 ≤ i3 ≤ L and i4 = 0.
At the time of replenishment the system takes from (1,S10, i3, 0) to
(1 + Q,S11, i3 − 1, 1), i3 ∈ VL

2 , with the intensity of transition β.
The sub matrix of these transition rates from � 1,S10 � to � 1 +
Q,S11 � is given by

[C(5)
1 ]i3 j3 =


C(51)

1 , j3 = i3, i3 ∈ VL
1 ,

C(52)
1 , j3 = i3 − 1, i3 ∈ VL

2 ,
0, otherwise,

where

[C(51)
1 ]i4 j4 =

{
β, j4 = i4, i4 ∈ VL

1 ,
0, otherwise,

[C(52)
1 ]i4 j4 =

{
β, j4 = 1, i4 = 0,
0, otherwise,

Hence,

[A1,1+Q]i2 j2 =



C(1)
1 , j2 = i2, i2 = S00,

C(2)
1 , j2 = i2, i2 = S01,

C(3)
1 , j2 = i2, i2 = S10,

C(4)
1 , j2 = S11, i2 = S01,

C(5)
1 , j2 = S11, i2 = S10,

0, otherwise,

We denote A1,1+Q as C1.
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Case (3) We now consider the case when the inventory level lies between two to
s. We note that for this case, only the inventory level changes from i1 to
i1 + Q, i1 ∈ Vs

2. The other system state does not change. Hence, [Ai1,i1+Q]i2 j2 =
βI(3+L2)(3+L2).
More explicitly, for i1 ∈ Vs

2

[C]i2 j2 =


C(1), j2 = i2, i2 = S00,
C(2), j2 = i2, i2 = S10,
C(3), j2 = i2, i2 = S01,
C(4), j2 = i2, i2 = S11,
0, otherwise,

where,

[C(1)]i3 j3 =

{
J0, j3 = i3, i3 = 0,
0, otherwise,

[J0]i4 j4 =

{
β, j4 = i4, i4 = 0,
0, otherwise,

[C(2)]i3 j3 =

{
J1, j3 = i3, i3 = 1,
0, otherwise,

[J1]i4 j4 =

{
β, j4 = i4, i4 = 0,
0, otherwise,

[C(3)]i3 j3 =

{
J2, j3 = i3, i3 = 0,
0, otherwise,

[J2]i4 j4 =

{
β, j4 = i4, i4 = 1,
0, otherwise,

[C(4)]i3 j3 =

{
J3, j3 = i3, i3 ∈ VL

1
0, otherwise,

[J3]i4 j4 =

{
β, j4 = i4, i4 ∈ VL

1 ,
0, otherwise,
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Hence, we denote Ai1,i1+Q, i1 ∈ Vs
2 as C.

Next we consider the case Ai1,i1−1, i1 ∈ VS
1 . This will occur only when the ser-

vice completion of the customer or any one of i1(i1 ∈ VS
1 ) item fails.

Case (4) Now we assume that inventory level is one, that is A1,0. For this, the
following cases occur:

Case (4a) Let i2 = S00, i3 = 0 and i4 = 0.
Due to perishability of the inventory takes the inventory level from (1,S00, 0, 0)
to (0,S00, 0, 0), with intensity of transition γ. The sub matrix of the transition
rates from� 1,S00 � to� 0,S00 � is given by

[B(1)
1 ]i3 j3 =

{
B(11)

1 , j3 = i3, i3 = 0,
0, otherwise,

where

[B(11)
1 ]i4 j4 =

{
γ, j4 = i4, i4 = 0,
0, otherwise,

Case (4b) Let i2 = S10, 1 ≤ i3 ≤ L and 0 ≤ i4 ≤ L.
Due to the service completion of a customer in queue-1, both queue-1 size
and inventory level decrease by one and the state of the process moves from
(1,S10, i3, i4) to (0,S00, i3 − 1, i4), i3 ∈ VL

1 , i4 ∈ VL
0 , with intensity of transition

µ1. The sub matrix of the transition rates from � 1,S10 � to � 0,S00 � is
given by

[B(2)
1 ]i3 j3 =

{
B(21)

1 , j3 = i3 − 1, i3 ∈ VL
1 ,

0, otherwise,

where

[B(21)
1 ]i4 j4 =

{
µ1, j4 = i4, i4 ∈ VL

0 ,
0, otherwise,

Case (4c) Let i2 = S01, 0 ≤ i3 ≤ L and 1 ≤ i4 ≤ L.
The service of a customer in queue-2 is completed, both queue-2 size and
inventory level decrease by one and the state of the process moves from
(1,S01, i3, i4) to (0,S00, i3, i4 − 1), i3 ∈ VL

0 , i4 ∈ VL
1 , with intensity of transition

µ2. The sub matrix of the transition rates from � 1,S01 � to � 0,S00 � is
given by

[B(3)
1 ]i3 j3 =

{
B(31)

1 , j3 = i3, i3 ∈ VL
0 ,

0, otherwise,
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where

[B(31)
1 ]i4 j4 =

{
µ2, j4 = i4 − 1, i4 ∈ VL

1 ,
0, otherwise,

Hence, A1,0 is given by

[A1,0]i2 j2 =


B(1)

1 , j2 = i2, i2 = S00,

B(2)
1 , j2 = S00, i2 = S10,

B(3)
1 , j2 = S00, i2 = S01,

0, otherwise,

We denote A1,0 as B1.

Case (5) Now we consider the case that the inventory level is 2, that is A2,1. For
this, the following cases occur:

Case (5a) Let i2 = S00, i3 = 0 and i4 = 0.
Perishability of the inventory takes the inventory level from (2,S00, 0, 0) to
(1,S00, 0, 0), with intensity of transition 2γ. The sub matrix of the transition
rates from� 2,S00 � to� 1,S00 � is given by

[B(1)
2 ]i3 j3 =

{
B(11)

2 , j3 = i3, i3 = 0,
0, otherwise,

where

[B(11)
2 ]i4 j4 =

{
2γ, j4 = i4, i4 = 0,
0, otherwise,

Case (5b) Let i2 = S10, i3 = 1 and i4 = 0.

• A transition from (2,S10, 1, 0) to (1,S10, 1, 0), takes place when any of
the item perishes, with intensity of transition γ. The sub matrix of the
transition rates from� 2,S10 � to� 1,S10 � is given by

[B(2)
2 ]i3 j3 =

{
B(21)

2 , j3 = i3, i3 = 1,
0, otherwise,

where

[B(21)
2 ]i4 j4 =

{
γ, j4 = i4, i4 = 0,
0, otherwise,
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• At the time of service completion of a customer in queue-1, both queue-
1 size and inventory level decrease by one then, the state of the system
changes from (2,S10, 1, 0) to (1,S00, 0, 0), with intensity of transition µ1.
The sub matrix of the transition rates from� 2,S10 � to� 1,S00 � is
given by

[B(3)
2 ]i3 j3 =

{
B(31)

2 , j3 = 0, i3 = 1,
0, otherwise,

where

[B(31)
2 ]i4 j4 =

{
µ1, j4 = i4, i4 = 0,
0, otherwise,

Case (5c) Let i2 = S01, i3 = 0 and i4 = 1.

• Due to the perishability, the inventory takes the inventory level from
(2,S01, 0, 1) to (1,S01, 0, 1), with intensity of transition γ. The sub matrix
of the transition rates from� 2,S01 � to� 1,S01 � is given by

[B(4)
2 ]i3 j3 =

{
B(41)

2 , j3 = i3, i3 = 0,
0, otherwise,

where

[B(41)
2 ]i4 j4 =

{
γ, j4 = i4, i4 = 1,
0, otherwise,

• The service of a customer in queue-2 is completed, both queue-2 size
and inventory level decrease by one then, the state of the system
changes from (2,S01, 0, 1) to (1,S00, 0, 0), with intensity of transition
µ2. The sub matrix of the transition rates from� 2,S01 � to� 1,S00 �

is given by

[B(5)
2 ]i3 j3 =

{
B(51)

2 , j3 = i3, i3 = 0,
0, otherwise,

where

[B(51)
2 ]i4 j4 =

{
µ2, j4 = 0, i4 = 1,
0, otherwise,

case (5d) Let i2 = S11, 1 ≤ i3 ≤ L and 1 ≤ i4 ≤ L.

• At the time of service completion of a customer in queue-1, both queue-
1 size and the inventory level decrease by one and takes the system
state from (2,S11, i3, i4) to (1,S01, i3−1, i4), i3 ∈ VL

1 , i4 ∈ VL
1 , with intensity

of transition µ1. The sub matrix of the transition rates from� 2,S11 �

to� 1,S01 � is given by

[B(6)
2 ]i3 j3 =

{
B(61)

2 , j3 = i3 − 1, i3 ∈ VL
1 ,

0, otherwise,
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where

[B(61)
2 ]i4 j4 =

{
µ1, j4 = i4, i4 =∈ VL

1 ,
0, otherwise,

• At the time of service completion of a customer in the queue-2, both
queue-2 size and the inventory level decrease by one and takes the
system state from (2,S11, i3, i4) to (1,S10, i3, i4 − 1), i3 ∈ VL

1 , i4 ∈ VL
1 , with

intensity of transition µ2. The sub matrix of the transition rates from
� 2,S11 � to� 1,S10 � is given by

[B(7)
2 ]i3 j3 =

{
B(71)

2 , j3 = i3, i3 ∈ VL
1 ,

0, otherwise,

where

[B(71)
2 ]i4 j4 =

{
µ2, j4 = i4 − 1, i4 ∈ VL

1 ,
0, otherwise,

Hence, A2,1 is given by

[A2,1]i2 j2 =



B(1)
2 , j2 = i2, i2 = S00,

B(2)
2 , j2 = i2, i2 = S10,

B(3)
2 , j2 = S00, i2 = S10,

B(4)
2 , j2 = i2, i2 = S01,

B(5)
2 , j2 = S00, i2 = S01,

B(6)
2 , j2 = S01, i2 = S11,

B(7)
2 , j2 = S10, i2 = S11,

0, otherwise,

We denote A2,1 as B2.

Case (6) Now, we assume that the inventory level lies between three to S, that is
Ai1,i1−1,
i1 ∈ VS

3 . For this, we have the following cases:

case (6a) Let i2 = S00, i3 = 0 and i4 = 0.
A transition from (i1,S00, 0, 0) to (i1 − 1,S00, 0, 0), will take place when any
one of i1 items perishes at a rate of γ, and the intensity for this transition
is i1γ, i1 ∈ VS

3 . The sub matrix of the transition rates from � i1,S00 � to
� i1 − 1,S00 � is given by

[B(1)
i1

]i3 j3 =

{
B(11)

i1
, j3 = i3, i3 = 0,

0, otherwise,

where

[B(11)
i1

]i4 j4 =

{
i1γ, j4 = i4, i4 = 0,
0, otherwise,
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case (6b) Let i2 = S10, i3 = 1 and i4 = 0.

• Due to perishability of the inventory, the inventory level changes from
(i1,S10, 1, 0) to (i1 − 1,S10, 1, 0), with the intensity of transition (i1 − 1)γ,
i1 ∈ VS

3 . The sub matrix of the transition rates from � i1,S10 � to
� i1 − 1,S10 � is given by

[B(2)
i1

]i3 j3 =

{
B(21)

i1
, j3 = i3, i3 = 1,

0, otherwise,

where

[B(21)
i1

]i4 j4 =

{
(i1 − 1)γ, j4 = i4, i4 = 0,
0, otherwise,

• When server-1 completes the service, the state of the system changes
from (i1,S10, 1, 0) to (i1 − 1,S00, 0, 0), with the intensity of transition µ1.
The sub matrix of the transition rates from� i1,S10 � to� i1−1,S00 �

is given by

[B(3)
i1

]i3 j3 =

{
B(31)

i1
, j3 = 0, i3 = 1,

0, otherwise,

where

[B(31)
i1

]i4 j4 =

{
µ1, j4 = i4, i4 = 0,
0, otherwise,

Case (6c) Let i2 = S01, i3 = 0 and i4 = 1.

• A transition from (i1,S01, 0, 1) to (i1−1,S01, 0, 1), takes place when any of
i1 items perishes at a rate of γ, thus the intensity of transition (i1 − 1)γ,
i1 ∈ VS

3 . The sub matrix of the transition rates from � i1,S01 � to
� i1 − 1,S01 � is given by

[B(4)
i1

]i3 j3 =

{
B(41)

i1
, j3 = i3, i3 = 0,

0, otherwise,

where

[B(41)
i1

]i4 j4 =

{
(i1 − 1)γ, j4 = i4, i4 = 1,
0, otherwise,

• Due to service completion of a customer in queue-2, the state of the
system changes from (i1,S01, 0, 1) to (i1 − 1,S00, 0, 0), with the intensity
of transition µ2. The sub matrix of the transition rates from� i1,S01 �

to� i1 − 1,S00 � is given by

[B(5)
i1

]i3 j3 =

{
B(51)

i1
, j3 = i3, i3 = 0,

0, otherwise,
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where

[B(51)
i1

]i4 j4 =

{
µ2, j4 = 0, i4 = 1,
0, otherwise,

case (6d) Let i2 = S11, i3 = 1 and i4 = 1.

• At the time of service completion of a customer in queue-1, the state
of the system changes from (i1,S11, 1, 1) to (i1 − 1,S01, 0, 1), with the
intensity of transition µ1. The sub matrix of the transition rates from
� i1,S11 � to� i1 − 1,S01 � is given by

[B(6)
i1

]i3 j3 =

{
B(61)

i1
, j3 = 0, i3 = 1,

0, otherwise,

where

[B(61)
i1

]i4 j4 =

{
µ1, j4 = i4, i4 = 1,
0, otherwise,

• The service of a customer in queue-2 is completed, then the state of the
system moves from (i1,S11, 1, 1) to (i1 − 1,S10, 1, 0), with the intensity of
transition µ2. The sub matrix of the transition rates from� i1,S11 � to
� i1 − 1,S10 �, is given by

[B(7)
i1

]i3 j3 =

{
B(71)

i1
, j3 = i3, i3 = 1,

0, otherwise,

where

[B(71)
i1

]i4 j4 =

{
µ2, j4 = 0, i4 = 1,
0, otherwise,

case (6e) • Let i2 = S11, 1 ≤ i3 ≤ L and 1 ≤ i4 ≤ L.
Due to perishability of the inventory, takes the inventory level from
(i1,S11, i3, i4) to (i1 − 1,S11, i3, i4), i3 ∈ VL

1 , i4 ∈ VL
1 , with intensity of

transition (i1 − 2)γ, i1 ∈ VS
3 .

• Let i2 = S11, 2 ≤ i3 ≤ L and 1 ≤ i4 ≤ L.
When server-1 completes the service of a customer in queue-1, the
system state moves from (i1,S11, i3, i4) to (i1 − 1,S11, i3 − 1, i4), i3 ∈ VL

2 ,
i4 ∈ VL

1 , with intensity of transition µ1.

• Let i2 = S11, 1 ≤ i3 ≤ L and 2 ≤ i4 ≤ L.
When server-2 completes the service of a customer in queue-2, the
system state moves from (i1,S11, i3, i4) to (i1 − 1,S11, i3, i4 − 1), i3 ∈ VL

1 ,
i4 ∈ VL

2 , with intensity of transition µ2.

Note that in the following cases jockeying of a customer will occur during
the service completion of a customer in any of the queues.
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• Let i2 = S11, i3 = 1 and 2 ≤ i4 ≤ L.
At the time of service completion of a customer in queue-1, the state
moves from (i1,S11, 1, i4) to (i1 − 1,S11, 1, i4 − 1), i4 ∈ VL

2 , with intensity
of transition µ1.

• Let i2 = S11, 2 ≤ i3 ≤ L and i4 = 1.
Due to service completion in queue-2, the state moves from (i1,S11, i3, 1)
to (i1 − 1,S11, i3 − 1, 1), i3 ∈ VL

2 , with intensity of transition µ2. The sub
matrix of the transition rates from� i1,S11 � to� i1−1,S11 � is given
by

[B(8)
i1

]i3 j3 =


B(81)

i1
, j3 = i3, i3 = 1,

B(82)
i1
, j3 = i3 − 1, i3 ∈ VL

2 ,

B(83)
i1
, j3 = i3, i3 ∈ VL

2 ,
0, otherwise,

where

[B(81)
i1

]i4 j4 =


(i1 − 2)γ, j4 = i4, i4 ∈ VL

1 ,
µ1 + µ2, j4 = i4 − 1, i4 ∈ VL

2 ,
0, otherwise,

[B(82)
i1

]i4 j4 =


µ1 + µ2, j4 = 1, i4 = 1,
µ1, j4 = i4, i4 ∈ VL

2 ,
0, otherwise,

[B(83)
i1

]i4 j4 =


(i1 − 2)γ, j4 = i4, i4 ∈ VL

1 ,
µ2, j4 = i4 − 1, i4 ∈ VL

2 ,
0, otherwise,

Hence Ai1,i1−1 is given by

[Ai1,i1−1]i2 j2 =



B(1)
i1
, j2 = i2, i2 = S00,

B(2)
i1
, j2 = i2, i2 = S10,

B(3)
i1
, j2 = S00, i2 = S10,

B(4)
i1
, j2 = i2, i2 = S01,

B(5)
i1
, j2 = S00, i2 = S01,

B(6)
i1
, j2 = S01, i2 = S11,

B(7)
i1
, j2 = S10, i2 = S11,

B(8)
i1
, j2 = i2, i2 = S11,

0, otherwise,
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We denote Ai1,i1−1 as Bi1 , i1 = 3, 4, . . . ,S.
Finally, we consider the case Ai1,i1 , i1 = 0, 1, . . . ,S. This will occur only when the

inventory level remains unchanged. Here, due to each of the following mutually
exclusive cases, a transition results in:

1. An arrival of customer may occur,
2. Impatience of a customer may occur.

Case (7) When the inventory level is zero, that is A0,0, we have the following
cases.

Case (7a) Let i2 = S00, i3 = i4.

• An arrival of a customer may choose queue-1, then the state of the
arrival process moves from (0,S00, i3, i4) to (0,S00, i3 + 1, i4), i3 ∈ VL−1

0 ,
i4 ∈ VL−1

0 , with intensity of transition pλ.

• An arrival of a customer may choose queue-2, then the state of the
arrival process moves from (0,S00, i3, i4) to (0,S00, i3, i4 + 1), i3 ∈ VL−1

0 ,
i4 ∈ VL−1

0 , with intensity of transition qλ.

Case (7b) Let i2 = S00, 0 ≤ i3 ≤ L − 1 and 1 ≤ i4 ≤ L.
If i3 < i4, an arrival of a customer increases the number of customer waiting
in queue-1 by one, then the state of system moves from (0,S00, i3, i4) to
(0,S00, i3 + 1, i4), i3 ∈ VL−1

0 , i4 ∈ VL
1 , with the intensity of transition λ.

Case (7c) Let i2 = S00, 1 ≤ i3 ≤ L and 0 ≤ i4 ≤ L − 1.
If i3 > i4, an arrival of a customer increases the number of customer waiting
in queue-2 by one, then the state of system moves from (0,S00, i3, i4) to
(0,S00, i3, i4 + 1), i3 ∈ VL

1 , i4 ∈L−1
0 , with the intensity of transition λ.

Case (7d) Let i2 = S00, 1 ≤ i3 ≤ L and 0 ≤ i4 ≤ L.
A customer leaves from queue-1 without getting service and the state of the
process moves from (0,S00, i3, i4) to (0,S00, i3 − 1, i4), i3 ∈ VL

1 , i4 ∈ VL
0 , with

intensity i3α1.

Case(7e) Let i2 = S00, 0 ≤ i3 ≤ L and 1 ≤ i4 ≤ L.
A customer leaves from queue-2 without getting service and the state of the
process moves from (0,S00, i3, i4) to (0,S00, i3, i4 − 1), i3 ∈ VL

0 , i4 ∈ VL
1 , with

intensity i4α1.

The transition rate for any of the transitions not considered in above cases from
7a to 7e, when inventory level is zero, is zero. The intensity of passage in the state
(0, i2, i3, i4) is given by

−
∑

(0,i2,i3,i4),(0, j2, j3, j4) a((0, i2, i3, i4); (0, j2, j3, j4))
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Using the above arguments from cases(7a-7e), we have constructed the following
matrices
For i3 = 0, 1, 2, . . . ,L − 1

[A(0i3)]i4 j4 =


pλ, j4 = i4, i4 = i3,
λ, j4 = i4, i3 < i4 ≤ L,
0, otherwise,

For i3 = 1, 2, . . . ,L

[A(i30)]i4 j4 =

{
i3α1, j4 = i4, i4 ∈ VL

0 ,
0, otherwise,

For i3 = 0, 1, 2, . . . ,L − 1

[A(i3i3)]i4 j4 =


qλ, j4 = i4 + 1, i4 = i3,
λ, j4 = i4 + 1, 0 ≤ i4 < i3,
i4α2, j4 = i4 − 1, i4 ∈ VL

1 ,
−(λ + i3α1 + i4α2 + β), j4 = i4, i4 ∈ VL

0 ,
0, otherwise,

For i3 = L

[A(i3i3)]i4 j4 =


λ, j4 = i4 + 1, i4 ∈ VL−1

0 ,
i4α2, j4 = i4 − 1, i4 ∈ VL

1 ,
−(i3α1 + i4α2 + β + λδ̄i4L), j4 = i4, i4 ∈ VL

0 ,
0, otherwise,

Combining these matrices in a suitable form, we get

[A(1)
0 ]i3 j3 =


A(0i3), j3 = i3 + 1, i3 ∈ VL−1

0 ,
A(i30), j3 = i3 − 1, i3 ∈ VL

1 ,
A(i3i3), j3 = i3, i3 ∈ VL

0 ,
0, otherwise,

Hence, the matrix A00 is given by

[A0]i2 j2 =

{
A(1)

0 , j2 = i2, i2 = S00,
0, otherwise,

and is denoted by A0.

Case (8) When the inventory level is one, that is A1,1, we have the following cases.

Case (8a) Let i2 = S00, i3 = i4.

• If at arrival a customer choose queue-1, then the state of the system
moves from (1,S00, 0, 0) to (1,S10, 1, 0), with intensity of transition pλ.

• If at arrival a customer choose queue-2, then the state of the system
moves from (1,S00, 0, 0) to (1,S01, 0, 1), with intensity of transition qλ.
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Case (8b) Let i2 = S10, i3 = i4.

• At arrival a customer may choose queue-1, then the state of the system
moves from (1,S10, i3, i4) to (1,S10, i3 + 1, i4), i3 ∈ VL−1

1 , i4 ∈ VL−1
1 , with

intensity of transition pλ.

• At arrival a customer may choose queue-2, then the state of the system
moves from (1,S10, i3, i4) to (1,S10, i3, i4 + 1), i3 ∈ VL−1

1 , i4 ∈ VL−1
1 , with

intensity of transition qλ.

Case (8c) Let i2 = S01, i3 = i4.

• If at arrival a customer choose queue-1, then the system changes from
(1,S01, i3, i4) to (1,S01, i3 + 1, i4), i3 ∈ VL−1

1 , i4 ∈ VL−1
1 , with intensity of

transition pλ.

• If at arrival a customer choose queue-2, then the system changes from
(1,S01, i3, i4) to (1,S01, i3, i4 + 1), i3 ∈ VL

1 , i4 ∈ VL
1 , with intensity of transi-

tion qλ.

case (8d) If i3 < i4, arrival of a customer increases the number of customer waiting
in queue-1 by one.

• Let i2 = S10, 1 ≤ i3 ≤ L − 1 and 2 ≤ i4 ≤ L, then the state of arrival
process moves from (1,S10, i3, i4) to (1,S10, i3 + 1, i4), i3 ∈ VL−1

1 , i4 ∈ VL
2 ,

with the intensity of transition λ.

• Let i2 = S01, 0 ≤ i3 ≤ L − 1 and 1 ≤ i4 ≤ L, then the state of arrival
process moves from (1,S01, i3, i4) to (1,S01, i3 + 1, i4), i3 ∈ VL−1

0 , i4 ∈ VL
1 ,

with the intensity of transition λ.

Case (8e) If i3 > i4, arrival of a customer increases the number of customer waiting
in queue-2 by one.

• Let i2 = S10, 1 ≤ i3 ≤ L and 0 ≤ i4 ≤ L − 1, then the state of arrival
process moves from (1,S10, i3, i4) to (1,S10, i3, i4 + 1), i3 ∈ VL

1 , i4 ∈ VL−1
0 ,

with the intensity of transition λ.

• Let i2 = S01, 2 ≤ i3 ≤ L and 1 ≤ i4 ≤ L − 1, then the state of arrival
process moves from (1,S01, i3, i4) to (1,S01, i3, i4 + 1), i3 ∈ VL

2 , i4 ∈ VL−1
1 ,

with the intensity of transition λ.

Case (8f) Let i2 = S10, 2 ≤ i3 ≤ L and 0 ≤ i4 ≤ L.
The waiting customer leaves from queue-1 without getting service and the
state of the process moves from (1,S10, i3, i4) to (1,S10, i3 − 1, i4), i3 ∈ VL

2 ,
i4 ∈ VL

0 , with intensity of transition (i3 − 1)α1.

Case (8g) Let i2 = S10, 1 ≤ i3 ≤ L and 1 ≤ i4 ≤ L.
The waiting customer leaves from queue-2 without getting service and the
state of the process moves from (1,S10, i3, i4) to (1,S10, i3, i4 − 1), i3 ∈ VL

1 ,
i4 ∈ VL

1 , with intensity i4α2.
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Case (8h) Let i2 = S01, 1 ≤ i3 ≤ L and 1 ≤ i4 ≤ L.
A customer leaves from queue-1 without getting service and the state of the
process moves from (1,S01, i3, i4) to (1,S01, i3 − 1, i4), i3 ∈ VL

1 , i4 ∈ VL
1 , with

intensity of transition i3α1.

Case (8i) Let i2 = S01, 0 ≤ i3 ≤ L and 2 ≤ i4 ≤ L.
A customer leaves from queue-2 without getting service and the state of the
process moves from (1,S01, i3, i4) to (1,S01, i3, i4 − 1), i3 ∈ VL

0 , i4 ∈ VL
2 , with

intensity (i4 − 1)α2.

The transition rate for any of the transitions not considered in above cases from
8a to 8i, when inventory level is one, is zero. The intensity of passage in the state
(1, i2, i3, i4) is given by

−
∑

(1,i2,i3,i4),(1, j2, j3, j4) a((1, i2, i3, i4); (1, j2, j3, j4))

Using the above arguments from case(8a to 8i), we have constructed the following
matrices

[A1]i2 j2 =



A(1)
1 , j2 = i2, i2 = S00,

A(2)
1 , j2 = S10, i2 = S00,

A(3)
1 , j2 = S01, i2 = S00,

A(4)
1 , j2 = i2, i2 = S10,

A(5)
1 , j2 = i2, i2 = S01,

0, otherwise,

[A(1)
1 ]i3 j3 =

{
A(11)

1 , j3 = i3, i3 = 0,
0, otherwise,

[A(11)
1 ]i4 j4 =

{
−(λ + γ + β), j4 = i4, i4 = 0,
0, otherwise,

[A(2)
1 ]i3 j3 =

{
A(21)

1 , j3 = 1, i3 = 0,
0, otherwise,

[A(21)
1 ]i4 j4 =

{
pλ, j4 = i4, i4 = 0,
0, otherwise,

[A(3)
1 ]i3 j3 =

{
A(31)

1 , j3 = i3, i3 = 0,
0, otherwise,

[A(31)
1 ]i4 j4 =

{
qλ, j4 = 1, i4 = 0,
0, otherwise,
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[A(4)
1 ]i3 j3 =


M(0i3), j3 = i3 + 1, i3 ∈ VL−1

1 ,
M(i30), j3 = i3 − 1, i3 ∈ VL

2 ,
M(i3i3), j3 = i3, i3 ∈ VL

1 ,
0, otherwise,

For i3 = 1, 2, . . . ,L − 1

[M(0i3)]i4 j4 =


pλ, j4 = i4, i4 = i3,
λ, j4 = i4, i3 < i4 ≤ L,
0, otherwise,

For i3 = 2, 3, . . . ,L

[M(i30)]i4 j4 =

{
(i3 − 1)α1, j4 = i4, i4 ∈ VL

0 ,
0, otherwise,

For i3 = 1, 2, . . . ,L − 1

[M(i3i3)]i4 j4 =


−(λ + (i3 − 1)α1 + i4α2 + µ1 + β), j4 = i4, i4 ∈ VL

0 ,
qλ, j4 = i4 + 1, i4 = i3,
λ, j4 = i4 + 1, 0 ≤ i4 < i3,
i4α2, j4 = i4 − 1, i4 ∈ VL

1 ,
0, otherwise,

For i3 = L

[M(i3i3)]i4 j4 =


λ, j4 = i4 + 1, i4 ∈ VL−1

0 ,
i4α2, j4 = i4 − 1, i4 ∈ VL

1 ,
−(λδ̄i4L + (i3 − 1)α1 + i4α2 + µ1 + β), j4 = i4, i4 ∈ VL

0 ,
0, otherwise,

[A(5)
1 ]i3 j3 =


N(0i3), j3 = i3 + 1, i3 ∈ VL−1

0 ,
N(i30), j3 = i3 − 1, i3 ∈ VL

1 ,
N(i3i3), j3 = i3, i3 ∈ VL

0 ,
0, otherwise,

For i3 = 0, 1, 2, . . . ,L − 1

[N(0i3)]i4 j4 =


pλδ̄i30, j4 = i4, i4 = i3,
λ, j4 = i4, i3 < i4 ≤ L,
0, otherwise,

For i3 = 1, 2, . . . ,L

[N(i30)]i4 j4 =

{
i3α1, j4 = i4, i4 ∈ VL

1 ,
0, otherwise,

For i3 = 0, 1, 2, . . . ,L − 1

[N(i3i3)]i4 j4 =


−(λ + i3α1 + (i4 − 1)α2 + µ2 + β), j4 = i4, i4 ∈ VL

1 ,
qλδ̄i30, j4 = i4 + 1, i4 = i3,
λ, j4 = i4 + 1, 1 ≤ i4 < i3,
(i4 − 1)α2, j4 = i4 − 1, i4 ∈ VL

2 ,
0, otherwise,
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For i3 = L

[N(i3i3)]i4 j4 =


λ, j4 = i4 + 1, i4 ∈ VL−1

1 ,
(i4 − 1)α2, j4 = i4 − 1, i4 ∈ VL

2 ,
−(λδ̄i4L + i3α1 + (i4 − 1)α2 + µ2 + β), j4 = i4, i4 ∈ VL

1 ,
0, otherwise,

Here we denote A1,1, as A1.

Arguments similar to above yield, for i1 = 2, 3, . . . ,S.

[Ai1 ]i2 j2 =



A(1)
i1
, j2 = i2, i2 = S00,

A(2)
i1
, j2 = S10, i2 = S00,

A(3)
i1
, j2 = S01, i2 = S00,

A(4)
i1
, j2 = i2, i2 = S10,

A(5)
i1
, j2 = S11, i2 = S10,

A(6)
i1
, j2 = i2, i2 = S01,

A(7)
i1
, j2 = S11, i2 = S01,

A(8)
i1
, j2 = i2, i2 = S11,

0, otherwise,

[A(1)
i1

]i3 j3 =

{
A(11)

i1
, j3 = i3, i3 = 0,

0, otherwise,

[A(1)
(i1)]i4 j4 =

{
−(λ + i1γ + βH(s − i1), j4 = i4, i4 = 0,
0, otherwise,

[A(2)
i1

]i3 j3 =

{
K0, j3 = 1, i3 = 0,
0, otherwise,

[K0]i4 j4 =

{
pλ, j4 = i4, i4 = 0,
0, otherwise,

[A(3)
i1

]i3 j3 =

{
K1, j3 = i3, i3 = 0,
0, otherwise,
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[K1]i4 j4 =

{
qλ, j4 = 1, i4 = 0,
0, otherwise,

[A(4)
i1

]i3 j3 =

{
A(41)

i1
, j3 = i3, i3 = 1,

0, otherwise,

[A(41)
(i1) ]i4 j4 =

{
−(λ + µ1 + (i1 − 1)γ + βH(s − i1), j4 = i4, i4 = 0,
0, otherwise,

[A(5)
i1

]i3 j3 =

{
K2, j3 = i3, i3 = 1,
0, otherwise,

[K2]i4 j4 =

{
λ, j4 = 1, i4 = 0,
0, otherwise,

[A(6)
i1

]i3 j3 =

{
A(61)

i1
, j3 = i3, i3 = 0,

0, otherwise,

[A(61)
(i1) ]i4 j4 =

{
−(λ + µ2 + (i1 − 1)γ + βH(s − i1), j4 = i4, i4 = 1,
0, otherwise,

[A(7)
i1

]i3 j3 =

{
K3, j3 = 1, i3 = 0,
0, otherwise,

[K3]i4 j4 =

{
λ, j4 = i4, i4 = 1,
0, otherwise,

[A(8)
i1

]i3 j3 =


G(0i3), j3 = i3 + 1, i3 ∈ VL−1

1 ,
G(i30), j3 = i3 − 1, i3 ∈ VL

2 ,
G(i1i3), j3 = i3, i3 ∈ VL

1 ,
0, otherwise,

For i3 = 1, 2, . . . ,L − 1

[G(0i3)]i4 j4 =


pλ, j4 = i4, i4 = i3,
λ, j4 = i4, i3 < i4 ≤ L,
0, otherwise,

For i3 = 2, 3, . . . ,L

[G(i30)]i4 j4 =

{
(i3 − 1)α1, j4 = i4, i4 ∈ VL

1 ,
0, otherwise,
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For i3 = 1, 2, . . . ,L − 1

[G(i1i3)]i4 j4 =



qλ, j4 = i4 + 1, i4 = i3,
λ, j4 = i4 + 1, 1 ≤ i4 < i3,
(i4 − 1)α2, j4 = i4 − 1, i4 ∈ VL

2 ,
−(λ + (i3 − 1)α1 + (i4 − 1)α2+
µ1 + µ2 + (i1 − 2)γ + H(s − i1)β), j4 = i4, i4 ∈ VL

1 ,
0, otherwise,

For i3 = L

[G(i1i3)]i4 j4 =


λ, j4 = i4 + 1, i4 ∈ VL−1

1 ,
(i4 − 1)α2, j4 = i4 − 1, i4 ∈ VL

2 ,
−((i3 − 1)α1 + (i4 − 1)α2 + µ1 + µ2+
(i1 − 2)γ + H(s − i1)β + λδ̄i4L), j4 = i4, i4 ∈ VL

0 ,
0, otherwise,

We denote Ai1,i1 , i1 = 2, 3, . . . ,S as Ai1 . Hence, the matrix Θ can be written in the
following form

Θi1 j1 =


Ai1 , j1 = i1, i1 = 0, 1, . . . ,S,
Bi1 , j1 = i1 − 1, i1 = 1, 2, . . . ,S − 1,S,
C, j1 = i1 + Q, i1 = 2, 3, . . . , s,
Ci1 , j1 = i1 + Q, i1 = 0, 1,
0, otherwise,

More explicitly,

Θ =



0 1 2 · · · s − 1 s s + 1 · · · Q S − 1 S
0 A0 C0
1 B1 A1 · · · C1
2 B2 A2 · · · C

. . .
. . .

s − 1 As−1 · · · C
s Bs As · · ·

s + 1 Bs + 1 As+1 · · ·

. . .

S − 1 AS−1
S BS AS


It can be noted that the matrix C0 is of size (L + 1)2

× (3 + L2). C1 is a matrix of
size (1 + 2L(L + 1)) × (3 + L2). B1 is a matrix of size (1 + 2L(L + 1)) × (L + 1)2. B2 is
a matrix of size (3 + L2) × (1 + 2L(L + 1)). A0 and A(1)

0 are square matrices of size
(L + 1)2. A1 is a square matrix of size 1 + 2L(L + 1). Bi1 , i1 ∈ VS

3 ,C,Ai1 , i1 ∈ VS
2 are

square matrices of size 3 + L2. C(1)
0 , C(2)

0 and C(3)
0 are matrices of size (L + 1)2

× 1.
C(4)

0 is matrix of size (L + 1)2
× L2. C(11)

0 , C(21)
0 , C(31)

0 and C(31)
1 are matrices of size
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(L + 1) × 1. C(41)
0 , C(42)

0 , C(43)
0 , C(51)

1 and C(52)
1 are matrices of size (L + 1) × L. C(2)

1 and
C(3)

1 are matrices of size L(L + 1)× 1. C(4)
1 and C(5)

1 are matrices of size L(L + 1)× L2.
C(1)

1 , C(11)
1 , C(1), C(2), C(3), J0, J1, J2, B(1)

2 , B(11)
2 , B(3)

2 , B(31)
2 , B(5)

2 , B(51)
2 , B(1)

i1
, B(2)

i1
, B(3)

i1
, B(4)

i1
,

B(5)
i1

, B(11)
i1

, B(21)
i1

, B(31)
i1

, B(41)
i1

, B(51)
i1

, A(1)
1 , A(11)

1 , A(1)
i1

, A(11)
i1

, A(2)
i1

, A(3)
i1

, A(4)
i1

, A(41)
i1

, A(6)
i1

, A(61)
i1

,

K0, and K1 are square matrices of size 1. C(41)
1 , C(42)

1 , B(61)
2 , B(81)

i1
, B(82)

i1
, B(83)

i1
, J3, G(0i3),

G(i30), G(i1i3), N(0i3), N(i30) and N(i3i3) are square matrices of size L. C(21)
1 , B(61)

i1
and B(71)

i1

are matrices of size L× 1. C(4), B(8)
(i1) and A(8)

i1
are square matrices of size L2. B(1)

1 is a

matrix of size 1× (L + 1)2. B(2)
1 and B(3)

1 are matrices of size L(L + 1)× (L + 1)2. B(31)
1

and B(71)
2 are matrices of size L × (L + 1). B(21)

1 , A(0i3), A(i30), A(i3i3), M(0i3), M(i30) and
M(i3i3) are square matrices of size L + 1. B(2)

2 , B(4)
2 , A(2)

1 and A(3)
1 are matrices of size

1 × L(L + 1). B(11)
1 , B(21)

2 and A(21)
1 are matrices of size 1 × (L + 1). B(41)

2 , A(31)
1 , K2 and

K3 are matrices of size 1×L. B(6)
2 and B(7)

2 are matrices of size L2
×L(L + 1). B(6)

i1
and

B(7)
i1

are matrices of size L2
× 1. A(4)

1 and A(5)
1 are square matrices of size L(L + 1).

A(5)
i1

and A(7)
i1

are matrices of order 1 × L2.

3.1. Steady state analysis
It can be seen from the structure of Θ that the homogeneous Markov process

{(L(t),Y(t),X1(t),X2(t)) : t ≥ 0} on the finite space E is irreducible, aperiodic and
persistent non-null. Hence the limiting distribution

φ(i1,i2,i3,i4) = lim
t→∞

Pr[L(t) = i1,Y(t) = i2,X1(t) = i3,X2(t) = i4|L(0),Y(0),X1(0),X2(0)] exists.

Let Φ = (Φ(0),Φ(1), . . . ,Φ(S)), each vector Φ(i1) being partitioned as follows

Φ(0) =
(
Φ(0,S00)

)
,

Φ(1) =
(
Φ(1,S00),Φ(1,S01),Φ(1,S10)

)
,

Φ(i1) =
(
Φ(i1,S00),Φ(i1,S01),Φ(i1,S10),Φ(i1,S11)

)
, i1 ∈ VS

2 ;

where

Φ(0,S00) =
(
Φ(0,S00,0),Φ(0,S00,1),Φ(0,S00,2), . . . ,Φ(0,S00,L)

)
,

Φ(1,S00) =
(
Φ(1,S00,0)

)
,

Φ(1,S01) =
(
Φ(1,S01,0),Φ(1,S01,1),Φ(1,S01,2), . . . ,Φ(1,S01,L)

)
,

Φ(1,S10) =
(
Φ(1,S10,1),Φ(1,S10,2),Φ(1,S10,3), . . . ,Φ(1,S10,L)

)
,

Φ(i1,S00) =
(
Φ(i1,S00,0)

)
, i1 ∈ VS

2 ;

Φ(i1,S10) =
(
Φ(i1,S10,1)

)
, i1 ∈ VS

2 ;

Φ(i1,S01) =
(
Φ(i1,S01,0)

)
, i1 ∈ VS

2 ;

Φ(i1,S11) =
(
Φ(i1,S11,1),Φ(i1,S11,2),Φ(i1,S11,3), . . . ,Φ(i1,S11,L)

)
, i1 ∈ VS

2 ;
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Further, the above vectors also partitioned as follows:

Φ(0,S00,i3) =
(
φ(0,S00,i3,0), φ(0,S00,i3,1), . . . , φ(0,S00,i3,L)

)
, i3 ∈ VL

0 ;

Φ(1,S00,0) =
(
φ(1,S00,0,0)

)
;

Φ(1,S01,i3) =
(
φ(1,S01,i3,1), φ(1,S01,i3,2), . . . , φ(1,S01,i3,L)

)
, i3 ∈ VL

0 ;

Φ(1,S10,i3) =
(
φ(1,S10,i3,0), φ(1,S10,i3,1), . . . , φ(1,S10,i3,L)

)
, i3 ∈ VL

1 ;

Φ(i1,S00,0) =
(
φ(i1,S00,0,0)

)
;

Φ(i1,S10,1) =
(
φ(i1,S10,1,0)

)
;

Φ(i1,S01,0) =
(
φ(i1,S01,0,1)

)
;

Φ(i1,S11,i3) =
(
φ(i1,S11,i3,1), φ(i1,S11,i3,2) . . . , φ(i1,S11,i3,L)

)
, i3 ∈ VL

1 .

Then the steady state probability Φ satisfies

ΦΘ = 0 and (1)∑∑∑
(i1,i2,i3,i4)

φ(i1,i2,i3,i4) = 1. (2)

The equation (1) yields the following set of equations:

Φi1 Bi1 + Φi1−1Ai1−1 = 0, i1 = 1, 2, . . . ,Q,
Φi1 Bi1 + Φi1−1Ai1−1 + Φ(i1−1−Q)C0 = 0, i1 = Q + 1, (∗)
Φi1 Bi1 + Φi1−1Ai1−1 + Φ(i1−1−Q)C1 = 0, i1 = Q + 2,
Φi1 Bi1 + Φi1−1Ai1−1 + Φ(i1−1−Q)C = 0, i1 = Q + 3,Q + 4, . . . ,S,

ΦSAS + ΦsC = 0.

After lengthy simplifications, the above equations, except (∗), yields

φi1 = (−1)Q−i1φQ
i1+1
Ω
j=Q

B jA−1
j−1, i1 = Q − 1,Q − 2, . . . , 0

= (−1)QφQ
s−1∑
j=0

[{(
(s+1)− j

Ω
k=Q

BkA−1
k−1

)
CA−1

S− j

}{(
i1+1
Ω

l=S− j
BlA−1

l−1

)
C1A−1

i

}]
, i1 = Q + 1

= (−1)2Q−i1+1φQ
S−i1∑
j=0

[(
s+1− j
Ω

k=Q
BkA−1

k−1

)
CA−1

S− j

(
i1+1
Ω

l=S− j
BlA−1

l−1

)]
,

i1 = S,S − 1, . . . ,Q + 2
where φQ can be obtained by solving,

φQ+1BQ+1 +φQAQ +φ0C0 = 0 and
S∑

i1=0
φi1 e = 1,

that is
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φQ

(−1)QφQ
s−1∑
j=0

[{(
(s+1)− j

Ω
k=Q

BkA−1
k−1

)
CA−1

S− j

}{(
i1+1
Ω

l=S− j
BlA−1

l−1

)
C1A−1

i

}]
BQ+1

+AQ +

{
(−1)Q

1
Ω
j=Q

B jA−1
j−1

}
C0

]
= 0,

and

φQ

[
Q−1∑
i1=0

(
(−1)Q−i1

i1+1
Ω
j=Q

B jA−1
j−1

)
+ I

+(−1)Q
s−1∑
j=0

[{(
(s+1)− j

Ω
k=Q

BkA−1
k−1

)
CA−1

S− j

}{(
i1+1
Ω

l=S− j
BlA−1

l−1

)
C1A−1

i

}]
+

S∑
i1=Q+1

(−1)2Q−i1+1
S−i1∑
j=0

[(
s+1− j
Ω

k=Q
BkA−1

k−1

)
CA−1

S− j

(
i1+1
Ω

l=S− j
BlA−1

l−1

)] e = 1.

4. SYSTEM PERFORMANCE MEASURES

In this section, we derive some measures of system performance in the steady
state. Using this, we derive the total expected cost rate.

4.1. Expected inventory level
Let ηI denote the excepted inventory level in the steady state. Then

ηI =

S∑
i1=1

i1Φ(i1,S00,0,0) +

S∑
i1=2

i1Φ(i1,S10,1,0) + i1Φ(i1,S01,0,1) +

L∑
i3=1

L∑
i4=1

i1Φ(i1,S11,i3,i4)

 +

L∑
i3=0

L∑
i4=1

Φ(1,S01,i3,i4) +

L∑
i3=1

L∑
i4=0

Φ(1,S10,i3,i4)

4.2. Expected reorder rate
Let ηR denote the expected reorder rate in the steady state. A reorder is placed

when the inventory level drops from s + 1 to s. This may occur in the following
cases:

• server-1 or server-2 may completes the service for a customer,

• an item may perish.

Hence, we get

ηR = (s + 1)γφ(s+1,S00,0,0) + (µ1 + sγ)φ(s+1,S10,1,0) + (µ2 + sγ)φ(s+1,S01,0,1) +

L∑
i3=1

L∑
i4=1

(
µ1 + µ2 + (s − 1)γ

)
φ(s+1,S11,i3,i4)
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4.3. Expected perishable rate
Let ηP denote the expected perishable rate for the i1 − th inventory level which

is given by

ηP =

S∑
i1=1

i1γφ(i1,S00,0,0) +

S∑
i1=2

(i1 − 1)γφ(i1,S10,1,0) + (i1 − 1)γφ(i1,S01,0,1) +

L∑
i3=1

L∑
i4=1

(i1 − 2)γφ(i1,S11,i3,i4)


4.4. Expected number of customers in queue-1

Let ηW1 denote the expected number of customers in queue-1. Hence, ηW1 is
given by

ηW1 =

L∑
i3=1

 L∑
i4=0

(
i3φ(0,S00,i3,i4) + i3φ(1,S10,i3,i4)

)
+

L∑
i4=1

i3φ(1,S01,i3,i4)

 +

S∑
i1=2

φ(i1,S10,1,0) +

L∑
i3=1

L∑
i4=1

i3φ(i1,S11,i3,i4)


4.5. Expected number of customers in queue-2

Let ηW2 denote the expected number of customer in queue-2. Hence, ηW2 is
given by

ηW2 =

L∑
i3=0

L∑
i4=1

(
i4φ(0,S00,i3,i4) + i4φ(1,S01,i3,i4)

)
+

S∑
i1=2

φ(i1,S01,0,1) +

L∑
i3=1

L∑
i4=1

i4φ(i1,S11,i3,i4)

 +

L∑
i3=1

L∑
i4=1

i4φ(1,S10,i3,i4)

4.6. Expected balking rate
Let ηBR denote the expected balking rate in the steady state which is given by

ηBR = λ

φ(0,S00,L,L) + φ(1,S01,L,L) + φ(1,S10,L,L) +

S∑
i1=2

φ(i1,S11,L,L)
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4.7. Expected reneging rate in queue-1
Let ηR1 denote the expected reneging rate in the queue-1. Then,

ηR1 =

L∑
i3=1

 L∑
i4=0

(
i3α1φ

(0,S00,i3,i4) + (i3 − 1)α1φ
(1,S10,i3,i4)

)
+

L∑
i4=1

i3α1φ
(1,S01,i3,i4)

 +

S∑
i1=2

L∑
i3=1

L∑
i4=1

(i3 − 1)α1φ
(i1,S11,i3,i4)

4.8. Expected reneging rate in queue-2
Let ηR2 denote the expected reneging rate in the queue-2. Then,

ηR2 =

L∑
i3=0

L∑
i4=1

(
i4α2φ

(0,S00,i3,i4) + (i4 − 1)α2φ
(1,S01,i3,i4)

)
+

L∑
i3=1

L∑
i4=1

i4α2φ
(1,S10,i3,i4) +

S∑
i1=2

L∑
i3=1

L∑
i4=1

(i4 − 1)α2φ
(i1,S11,i3,i4)

4.9. Probability that both the servers are idle
Let ηSI denote the probability that both the servers are idle is given by

ηSI =

L∑
i3=0

L∑
i4=0

φ(0,S00,i3,i4) +

S∑
i1=1

φ(i1,S00,0,0)

4.10. Probability that both the servers are busy
Let ηSB denote the probability that both the servers are busy is given by

ηSB =

S∑
i1=2

L∑
i3=1

L∑
i4=1

φ(i1,S11,i3,i4)

4.11. Probability that both the servers are idle when the inventory level is positive
Let ηSP denote the probability that both the Servers are idle when the inventory

level is positive is given by

ηSP =

S∑
i1=1

φ(i1,S00,0,0)
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5. TOTAL EXPECTED COST RATE

We assume various cost elements associated with different system perfor-
mance measures, given as follows:

ch − inventory carrying cost per unit per unit time,
cs − setup cost per order,
cp − perishable rate per unit per unit time,

cw1 − waiting time cost of a customer in the queue-1 per unit time,
cw2 − waiting time cost of a customer in the queue-2 per unit time,

cl − cost per customer lost per unit time,
cr1 − reneging cost of a customer in the queue-1 per unit time,
cr2 − reneging cost of a customer in the queue-2 per unit time,

We construct the function for the expected total cost per unit time as follows:

TC(S, s,L) = chηI + csηR + cpηP + cw1ηW1 + cw2ηW2 + clηBR + cr1ηR1 + cr2ηR2

where η’s are as given in the above measures of system performance.
Since the computation ofφ′s are recursive, it is very difficult to show the convexity
of the total expected cost rate. However, we present, in the next section some
numerical examples to illustrate the results of this work.

6. NUMERICAL ILLUSTRATIONS

In this section, we discuss some numerical examples that reveal the possible
convexity of the total expected cost rate. A typical three dimensional plot of the
total expected cost function TC(s,S, 9) is given in Figure 1. Some 2-dimensional
plot for variation of system parameters on performance measures are presented
through Figure 2 to Figure 16, and the results confirm with what one would expect.
Table 1, gives the total expected cost rate as a function of s and S by fixing other
variables as constant. After obtaining the local optima, S∗ and s∗, the sensitivity
analysis is carried out to see how the changes in S and s affect the total expected cost
rate(Figure 1). We have computed the values of TC(s,S,9)

TC(s∗,S∗,9) , by fixing the parameters
and costs as: λ = 5, β = 0.008, γ = 0.02, µ1 = 7, µ2 = 4, α1 = 3, α2 = 0.5, p =
0.5, q = 0.5, ch = .004, cs = 50, cp = 0.12, cw1 = 0.01, cw2 = 6, cb = 7, cr1 = 3, cr1 = 8.
In that Table, underlined value denotes the column minimum and in bold faced
value denotes the row minimum. Hence, both underlined and bold faced value
refer to the optimal value of the function. It appears that the total expected cost
rate is more sensitive to the changes in s than that to in S.

In the following numerical examples, we select the cost values as ch = .004, cs =
50, cp = 0.12, cw1 = 0.01, cw2 = 6, cb = 7, cr1 = 3, cr1 = 8.
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Figure 1: Effect of S and s on Total Expected Cost Rate

Table 1: Total expected cost rate as a function of S and s
s 6 7 8 9 10

S
49 1.002418 1.000745 1.000259 1.000572 1.001445
50 1.002364 1.000658 1.000133 1.000403 1.001230
51 1.002349 1.000611 1.000049 1.000280 1.001063
52 1.002369 1.000600 1.000005 1.000198 1.000940
53 1.002422 1.000626 1.000000 1.000156 1.000859
54 1.002508 1.000686 1.000029 1.000153 1.000819
55 1.002624 1.000779 1.000093 1.000185 1.000816
56 1.002770 1.000902 1.000190 1.000252 1.000851

Example 6.1.

In this example, we look at the impact of the demand rate λ, the perishable
rate γ, the lead time rate β, service rates µ1 and µ2 for server-1 and server-2,
respectively, on the total expected cost rate TC(s,S, 9). Towards this end, we first
fix the parameter values as α1 = 8, α2 = 0.9, p = 0.5, q = 0.5. From Figures 2 to 5,
we observe the following:

1. The optimal expected cost rate increases when λ and γ increase.
2. The optimal expected cost rate decreases when β, µ1 and µ2 increase.

Example 6.2.

In this example, we study the impact of the demand rate λ, the lead time rate
β, service rates µ1 and µ2 for server-1 and server-2 respectively, impatience rates
α1 and α2 of queue-1 and queue-2 respectively and system level on the expected
number of customer in each queue. Towards this end, we first fix the parameter
values as γ = 0.02, p = 0.5, q = 0.5. From Figures 6 to 11, we observe the following:
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Figure 2: TC vs β for different values of γ

Figure 3: TC vs β for different values of λ

1. The expected number of customers in the waiting hall(queue-1 and queue-2)
increases when λ and L increase.

2. The expected number of customers in the queue-1 and queue-2 decreases
when reorder rate and service rates µ1 and µ2 of server-1 and server-2
respectively decrease.

3. The expected number of customers in the queue-1 and queue-2 decreases
when the impatience rates α1 and α2 of queue-1 and queue-2 respectively
increase.

Example 6.3.

In this example, we look at the impact of the demand rate λ, the perishable rate γ,
the lead time rate β, service rates µ1 and µ2 for server-1 and server-2, respectively,
on the expected loss rate. Towards this end, we first fix the parameter values as
α1 = 8, α2 = 0.9, p = 0.5, q = 0.5. From Figures 12 to 14, we observe the following:

1. The expected loss rate increases when λ and γ increase.
2. The expected loss rate decreases when β, µ1 and µ2 increase.
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Figure 4: TC vs µ1 for different values of β

Figure 5: TC vs µ2 for different values of β

Example 6.4.

In this example, we look at the impact of the lead time rate β, service rates µ1 and
µ2 for server-1 and server-2 respectively on the expected reneging rate of each
queue. Towards this end, we first fix the parameter values as λ = 5, γ = 0.04;α1 =
8, α2 = 0.9, p = 0.5, q = 0.5. From Figures 14 to 16, we observe the following:

1. The expected reneging rate of each queue decreases when β, µ1 and µ2
increase.
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Figure 6: ηW1 vs λ for different values of L

Figure 7: ηW2 vs λ for different values of L

Figure 8: ηW1 vs λ for different values of µ1
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Figure 9: ηW2 vs λ for different values of µ2

Figure 10: ηW1 vs β for different values of α1

Figure 11: ηW2 vs β for different values of α2
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Figure 12: ηBR vs β for different values of γ

Figure 13: ηBR vs λ for different values of µ1

Figure 14: ηBR vs λ for different values of µ2
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Figure 15: ηW2 vs λ for different values of µ2

Figure 16: ηW1 vs β for different values of α1
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7. CONCLUDING REMARKS

We have studied a continuous review stochastic queueing-inventory system
with two parallel queues and jockeying. The model is analyzed within the frame-
work of Markov processes. Joint probability distribution of the number of cus-
tomers in the system (queue-1 and queue-2), status of the server and the inventory
level is obtained in the steady state. Various system performance measures are
derived and the long-run total expected cost rate is calculated. By assuming a
suitable cost structure on the queueing-inventory system, we have presented ex-
tensive numerical illustrations to show the effect of change of values for constants
on the total expected cost rate. The authors are working in the direction of MAP
(Markovian arrival process) arrival for the customers and service times that fol-
low PH-distributions.
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