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Abstract: A (v, 3, 2)−covering is a family of 3-subsets of a v-set, called blocks, such
that any two elements of v-set appear in at least one of the blocks. In this paper,
we propose new construction of (v, 3, 2)−coverings with the minimum number
of blocks. This construction represents a generalization of Bose’s and Skolem’s
constructions of Steiner systems S(2, 3, 6n + 3) and S(2, 3, 6n + 1). Unlike the
existing constructions, our construction is direct and it uses the set of base blocks
and permutation p, so by applying it to the remaining blocks of (v, 3, 2)−coverings
are obtained.
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1. INTRODUCTION

Let v, k, and t denote natural numbers where v ≥ k ≥ t. The family of k-
subsets, called blocks, chosen from a v-set, such that each t-subset is contained
in at least one of the blocks, is a (v, k, t) covering design, or (v, k, t)−covering. The
number of blocks is the size of the covering. The covering number C(v, k, t) is the
minimum size of a (v, k, t)−covering. If each t-subset is contained in exactly one
block, (v, k, t)−covering is Steiner system S(t, k, v).

Covering designs and Steiner systems have application in statistical test creat-
ing, tournament scheduling, cryptography and coding, computer science, lottery
systems creating etc.

Covering numbers have already been studied extensively, and numerous pa-
pers have been published for particular values of v, k, and t. Nevertheless, exact
values of C(v, k, t) are known only if v, k, and t are small, or in some special
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cases, such as C(v, 3, 2). A large number of papers consider only lower and upper
bounds on C(v, k, t).

The best general lower bound on C(v, k, t), according to Schönheim can be
derived from the inequality C(v, k, t) ≥

⌈
v
k C(v − 1, k − 1, t − 1)

⌉
, where ⌈·⌉ represents

ceiling function, which iterated t − 1 time gives the Schönheim bound [17]:

C(v, k, t) ≥ L(v, k, t) =
⌈v

k

⌈v − 1
k − 1

· · ·
⌈v − t + 1

k − t + 1

⌉
· · ·
⌉⌉
. (1)

Rödl gives the best upper bound [16]: limv→∞ C(v, k, t) · (kt)/(vt) = 1. Erdős and

Spencer give the bound [5]: C(v, k, t) · (kt)/(vt) ≤ (1 + ln
(k

t
))
. Note that this bound is

weaker than the Rödl bound. However, unlike Rödl’s asymptotic bound, it can
be applied to all v, k, and t.

Most of the best known lower and upper bounds, and exact values can be
found at the site [7]. Numerous best known upper bounds can also be found in
[4, 8, 12, 13, 14, 15].

Fort and Hedlund have proved that values C(v, 3, 2) reach Schönheim lower
bound, ie. for each v ∈N; v > 3, it holds [6]

C(v, 3, 2) = L(v, 3, 2). (2)

Steiner systems S(2, 3, v) exist for v = 6n + 1 and v = 6n + 3 [2], which implies
the equality (2) for mentioned values of parameter v. In each of the remaining
four cases, Fort and Hedlund give indirect construction (v, 3, 2)−covering with
L(v, 3, 2) blocks.

In this paper, we give new construction of the minimal (v, 3, 2)−coverings,
which consequently proves the equality (2). This construction represents the
generalization of the Bose’s construction of the Steiner system S(2, 3, 6n+3) [1, 11,
19] and Skolem’s construction of the S(2, 3, 6n+1) [11, 18]. Unlike the original Fort
and Heldund construction, and the other indirect constructions, our construction
belongs to the direct constructions. This construction is simple and do not require
the construction of other covering designs such as pairwise balanced design (PBD)
or group divisible design(GDD) [9].

We will construct minimal (v, 3, 2)−covering for each v (mod 6) separately and
present them in the respective subsections. In each of the 6 cases, we will construct
(v, 3, 2)−coverings with L(v, 3, 2) blocks, where (from (1)):

L(v, 3, 2) =



6n2 , for v = 6n,
6n2 + n , for v = 6n + 1,
6n2 + 4n + 1 , for v = 6n + 2,
6n2 + 5n + 1 , for v = 6n + 3,
6n2 + 8n + 3 , for v = 6n + 4,
6n2 + 9n + 4 , for v = 6n + 5.

(3)



N. Nikolić / New construction of minimal (v, 3, 2)−coverings 459

2. NEW CONSTRUCTION OF MINIMAL (v, 3, 2)−COVERINGS

During the construction of (v, 3, 2)−coverings, we will use certain permu-
tations of a given set V; |V| = v. In the cycle notation, a permutation p =
(a0 a1 . . . ak−1)(b0 b1 . . . bl−1) . . . (ai, b j ∈ V) represents the mapping p : V 7→ V, de-
fined by p(ai) = ai+1 (mod k), p(b j) = b j+1 (mod l), . . . The permutation p j : V 7→ V is de-
fined by p j(ai) = p(p(. . . p︸   ︷︷   ︸

j

(ai) . . .)) = ai+ j (mod k). For the block {p(a), p(b), p(c)}, we will

say that it is obtained by applying the permutation p to block {a, b, c}; a, b, c ∈ V. The
application of the permutations p0 = e, p1, . . . , pn−1 to block {a, b, c}we will call ap-
plying the permutation p, n times to a block {a, b, c}. By applying the permutation p,
n times to the block {a, b, c}, blocks {a, b, c}, {p(a), p(b), p(c)}, . . . , {pn−1(a), pn−1(b), pn−1(c)},
respectively, are obtained.

First, we give the known construction of the (6n + 3, 3, 2)−covering [3, 10].

2.1. Minimal (6n + 3, 3, 2)−covering
Theorem 2.1. Let v = 6n+3 and V = {a0, a1, . . . , a2n}∪{b0, b1, . . . , b2n}∪{c0, c1, . . . , c2n}.
Let B be the set of blocks obtained by applying the permutation

p = (a0 a1 . . . a2n)(b0 b1 . . . b2n)(c0 c1 . . . c2n), (4)

2n + 1 times to blocks

{a0, b1, b2n}, {a0, b2, b2n−1}, . . . , {a0, bn, bn+1},
{b0, c1, c2n}, {b0, c2, c2n−1}, . . . , {b0, cn, cn+1},
{c0, a1, a2n}, {c0, a2, a2n−1}, . . . , {c0, an, an+1},
{a0, b0, c0}.

(5)

Then, (V,B) is one (v, 3, 2)−covering with L(v, 3, 2) blocks.

Proof. By applying the permutation p, 2n + 1 times to an arbitrary block from
(5), 2n + 1 blocks are obtained, which means that B contains (3n + 1)(2n + 1) =
6n2 + 5n + 1 = L(6n + 3, 3, 2) different blocks. Let us prove that (V,B) is one
(v, 3, 2)−covering, ie. that each pair of elements of the set V is contained in some
block from B.

Each pair {a0, b j} (0 6 j 6 2n) is contained in some block from (5): pair {a0, b0}
in the block {a0, b0, c0}, and pair {a0, b j} ( j , 0) in some block from the first row
in (5). By applying the permutation pi (1 6 i 6 2n) to the blocks from (5),
element a0 is mapped into the element ai = pi(a0), while elements b0, b1, . . . , b2n
are mapped into bi, bi+1 (mod 2n+1), . . . , bi−1 (mod 2n+1), respectively. Hence, each pair
{ai, b j} (0 6 i, j 6 2n) is contained in some block from B. Due to the symmetry, the
same holds for all pairs {bi, c j} and {ci, a j}.

Let us now consider the pairs {ai, a j}. Each pair {ai, a j}, such that i + j = 2n + 1,
is contained in some block from the third row in (5). For an arbitrary pair {ai, a j}
(0 6 i < j 6 2n), it is sufficient to prove the existence of the pair {ar, as} (0 6 r, s 6 2n,
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r + s = 2n + 1) and the permutation pt (0 6 t 6 2n) by which the pair {ar, as} is
mapped into the pair {ai, a j}, that is, it is sufficient to prove that the system of the
equation 

r + s = 2n + 1,
r + t (mod 2n + 1) = i,
s + t (mod 2n + 1) = j,

has the solution on r, s and t. If i and j are of the same parity, the solution of the
system is

r = 2n + 1 − j − i
2
, s =

j − i
2

and t =
i + j

2
,

and if i and j are with opposite parity, the solution of the system is

r = n − j − i − 1
2

, s = n +
j − i + 1

2
and t = n +

i + j + 1
2

(mod 2n + 1).

Hence, each pair {ai, a j} (0 6 i, j 6 2n, i , j) is contained in some block from B.
Due to the symmetry, the same holds for all pairs {bi, b j} i {ci, c j}. This proves the
theorem.

Note: Obtained (6n + 3, 3, 2)−covering is Steiner system, because each pair of
elements of the set V is contained in exactly one block from B. Moreover, it can
be shown that the previous construction is equivalent to Bose construction of the
Steiner system S(2, 3, 6n + 3).

In a similar way, we will construct (6n + 4, 3, 2)−covering.

2.2. Minimal (6n + 4, 3, 2)−covering
Theorem 2.2. Let v = 6n+4 and V = {a0, a1, . . . , a2n}∪{b0, b1, . . . , b2n}∪{c0, c1, . . . , c2n}∪
{∞}. Let B be the set of blocks obtained by applying the permutation

p = (a0 a1 . . . a2n)(b0 b1 . . . b2n)(c0 c1 . . . c2n)(∞), (6)

2n + 1 times to blocks

{a0, b1, b2n}, {a0, b2, b2n−1}, . . . , {a0, bn, bn+1},
{b0, c1, c2n}, {b0, c2, c2n−1}, . . . , {b0, cn, cn+1},
{c0, a1, a2n}, {c0, a2, a2n−1}, . . . , {c0, an, an+1},
{a0, b0, c0}, {a0, b0,∞},

(7)

including blocks obtained by applying the permutation p, n + 1 times to the block

{c0, cn,∞}. (8)

Then, (V,B) is one (v, 3, 2)−covering with L(v, 3, 2) blocks.
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Proof. The set B contains (3n + 2)(2n + 1) + (n + 1) = 6n2 + 8n + 3 = L(6n + 4, 3, 2)
different blocks. Let us prove that (V,B) is one (v, 3, 2)−covering, ie. that each pair
of elements of the set V is contained in some block from B.

As in theorem 2.1, we prove that each of the pairs {ai, b j}, {bi, c j} i {ci, a j} (0 6
i, j 6 2n), as well as each of the pairs {ai, a j}, {bi, b j} i {ci, c j} (0 6 i, j 6 2n, i , j), is
contained in some block from B.

It remains to prove that each pair containing the element ∞ is contained
in some block from B. By applying the permutation pi to the block {a0, b0,∞},
block {ai, bi,∞} is obtained, and each of the pairs {ai,∞} and {bi,∞} (0 6 i 6 2n)
is contained in some block from B. By applying the permutation pi to block
{c0, cn,∞}, block {ci, cn+i,∞} (0 6 i 6 n) is obtained. Hence, each pair {ci,∞}
(0 6 i 6 2n) is also contained in some block from B. This proves the theorem.

Note: Obtained (6n + 4, 3, 2)−covering is not Steiner system because each of the
pairs {ai, bi} (0 6 i 6 2n), {ci, cn+i} (0 6 i 6 n) and {cn,∞} is contained in two different
blocks from B.

In a similar way, we will construct (6n + 5, 3, 2)−covering.

2.3. Minimal (6n + 5, 3, 2)−covering
Theorem 2.3. Let v = 6n+5 and V = {a0, a1, . . . , a2n}∪{b0, b1, . . . , b2n}∪{c0, c1, . . . , c2n}∪
{∞0,∞1}. Let B be the set of blocks obtained by applying the permutation

p = (a0 a1 . . . a2n)(b0 b1 . . . b2n)(c0 c1 . . . c2n)(∞0 ∞1), (9)

2n + 1 times to blocks

{a0, b1, b2n}, {a0, b2, b2n−1}, . . . , {a0, bn, bn+1},
{b0, c1, c2n}, {b0, c2, c2n−1}, . . . , {b0, cn, cn+1},
{c1, a1, a2n}, {c1, a2, a2n−1}, . . . , {c1, an, an+1},
{a0, b0,∞0}, {b0, c0,∞1}, {c1, a0,∞1},

(10)

including the block {c0,∞0,∞1}. Then, (V,B) is one (v, 3, 2)−covering with L(v, 3, 2)
blocks.

Before proving the theorem, note that blocks in the third row and the last block
in (10) contain the element c1 instead the ”expected” element c0. Also, the element
∞1 is contained in two, and∞0 in just one block from (10). Thereby, the symmetry
is lost, and therefore the proof requires considering a larger number of cases.

Proof. The setB contains (3n+3)(2n+1)+1 = 6n2+9n+4 = L(6n+5, 3, 2) different
blocks. Let us prove that (V,B) is one (v, 3, 2)−covering, ie. that each pair of
elements of the set V is contained in some block from B.

As in theorem 2.1, we prove that each of the pairs {ai, b j} and {bi, c j} (0 6 i, j 6 2n)
is contained in some block fromB. Also, each pair {c1, a j} (0 6 j 6 2n) is contained
in some block from (10): pair {c1, a0} in the last block, and pair {c1, a j} ( j , 0) in
some block in the third row in (10). By applying the permutation pi (1 6 i 6 2n) to
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the blocks from (10), element c1 is mapped into ci+1 = pi(c1) (into c0, when i = 2n),
while the elements a0, a1, . . . , a2n are mapped into ai, ai+1 (mod 2n+1), . . . , ai−1 (mod 2n+1),
respectively. Hence, each pair {ci, a j} (0 6 i, j 6 2n) is also contained in some block
from B.

As in theorem 2.1, we prove that each of the pairs {ai, a j}, {bi, b j} and {ci, c j}
(0 6 i, j 6 2n, i , j) is contained in some block from B.

It remains to prove that each pair containing elements ∞0 or ∞1 is contained
in some block from B. By applying the permutation p, 2n + 1 times to the last
three blocks from (10), we obtain, respectively, the blocks:

{a0, b0,∞0}, {a1, b1,∞1}, . . . , {a2n, b2n,∞0},
{b0, c0,∞1}, {b1, c1,∞0}, . . . , {b2n, c2n,∞1},
{c1, a0,∞1}, {c2, a1,∞0}, . . . , {c0, a2n,∞1}.

By direct verification, we establish that each of the pairs {ai,∞ j}, {bi,∞ j} i {ci,∞ j}
(0 6 i 6 2n, j ∈ {0, 1}), except the pair {c0,∞0}, is contained in some of the specified
blocks. The pair {c0,∞0}, as well as the pair {∞0,∞1}, is contained in additional
block {c0,∞0,∞1}. This proves the theorem.

Note: Obtained (6n + 5, 3, 2)−covering is not Steiner system because the pair
{c0,∞1} is contained in three different blocks from B.

2.4. Minimal (6n + 1, 3, 2)−covering
The construction of the Steiner system STS(6n+1) differs somewhat from three

previous constructions.

Theorem 2.4. Let v = 6n + 1 and V = {a0, a1, . . . , a2n−1} ∪ {b0, b1, . . . , b2n−1}∪
{c0, c1, . . . , c2n−1} ∪ {∞}. Let B be the set obtained by allying the permutation

p = (a0 a1 . . . a2n−1)(b0 b1 . . . b2n−1)(c0 c1 . . . c2n−1)(∞), (11)

n times to blocks

{a0, b0, b2n−1}, {a0, b1, b2n−2}, . . . , {a0, bn−1, bn},
{b0, c0, c2n−1}, {b0, c1, c2n−2}, . . . , {b0, cn−1, cn},
{c0, a0, a2n−1}, {c0, a1, a2n−2}, . . . , {c0, an−1, an},
{an, b0,∞}, {an, b1, b2n−1}, . . . , {an, bn−1, bn+1},
{bn, c0,∞}, {bn, c1, c2n−1}, . . . , {bn, cn−1, cn+1},
{cn, a0,∞}, {cn, a1, a2n−1}, . . . , {cn, an−1, an+1},
{an, bn, cn}.

(12)

Then, (V,B) is one (v, 3, 2)−covering with L(v, 3, 2) blocks.

Proof. The set B contains n(6n + 1) = 6n2 + n = L(6n + 1, 3, 2) different blocks. Let
us prove that (V,B) is one (v, 3, 2)−covering, ie. that each pair of elements of the
set V is contained in some block from B.
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Each pair {a0, b j} (0 6 j 6 2n − 1) is contained in some block from the first row
in (12). Also, each pair {an, b j} (0 6 j 6 2n−1) is contained in some block from (12):
pair {an, bn} in the block {an, bn, cn}, and the pair {an, b j} ( j , n) in some block from
the fourth row in (12). By applying the permutation pi (1 6 i 6 n − 1) to blocks
from (12), element a0 is mapped into ai, an is mapped into an+i, while the elements
b0, b1, . . . , b2n−1 are mapped into bi, bi+1 (mod 2n), . . . , bi−1 (mod 2n), respectively. Hence,
each of the pairs {ai, b j} and {an+i, b j} (0 6 i 6 n − 1, 0 6 j 6 2n − 1) is contained
in some block from B. To put it more simply, each pair {ai, b j} (0 6 i, j 6 2n − 1)
is contained in some block from B. Due to the symmetry, the same holds for all
pairs {bi, c j} and {ci, a j}.

In a similar way, we prove that each of the pairs {ai,∞} and {an+i,∞} (0 6 i 6
n − 1), that is {ai,∞} (0 6 i 6 2n − 1), is contained in some block from B. Due to
the symmetry, the same holds for all pairs {bi,∞} and {ci,∞}.

Let us now consider the pairs {ai, a j}. Each pair {ai, a j} such that i + j = 2n − 1
is contained in some block from the third row, while each pair {ai, a j} such that
i + j = 2n is contained in some block from the sixth row in (12). For an arbitrary
pair {ai, a j} (0 6 i < j 6 2n − 1), it is sufficient to prove the existence of the pair
{ar, as} (0 6 r, s 6 2n − 1, r + s = 2n − 1 or r + s = 2n) and the permutation pt

(0 6 t 6 n − 1) by which the pair {ar, as} is mapped into the pair {ai, a j}, that is, it is
sufficient to prove that at least one of the systems

I :


r + s = 2n − 1,
r + t (mod 2n) = i,
s + t (mod 2n) = j,

II :


r + s = 2n,
r + t (mod 2n) = i,
s + t (mod 2n) = j,

has the solution on r, s and t. If 1 6 i + j 6 2n − 2, the solution is

r = 2n − j − i + δ
2

, s =
j − i − δ

2
and t =

i + j + δ
2

,

and if 2n − 1 6 i + j 6 4n − 3, the solution is

r = n − j − i + δ
2

, s = n +
j − i − δ

2
and t =

i + j + δ
2

− n,

where

δ =

{
0 , if i and j are of the same parity (solution of the system II),
1 , if i and j are with opposite parity (solution of the system I).

Hence, each pair {ai, a j} (0 6 i, j 6 2n − 1, i , j) is contained in some block from B.
Due to the symmetry, the same holds for all pairs {bi, b j} i {ci, c j}. This proves the
theorem.

Note: Obtained (6n + 1, 3, 2)−covering is Steiner system, because each pair of
elements of the set V is contained in exactly one block from B. Moreover, it can
be proved that the previous construction is equivalent to Skolem construction of
the Steiner system S(2, 3, 6n + 1)

In a similar way, we will construct (6n, 3, 2)−covering.
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2.5. Minimal (6n, 3, 2)−covering
Theorem 2.5. Let v = 6n and V = {a0, a1, . . . , a2n−1} ∪ {b0, b1, . . . , b2n−1}∪
{c0, c1, . . . , c2n−1}. Let B be the set of blocks obtained by applying the permutation

p = (a0 a1 . . . a2n−1)(b0 b1 . . . b2n−1)(c0 c1 . . . c2n−1), (13)

n times to blocks

{a0, b0, b2n−1}, {a0, b1, b2n−2}, . . . , {a0, bn−1, bn},
{b0, c0, c2n−1}, {b0, c1, c2n−2}, . . . , {b0, cn−1, cn},
{c0, a0, a2n−1}, {c0, a1, a2n−2}, . . . , {c0, an−1, an},
{an, b0, bn}, {an, b1, b2n−1}, . . . , {an, bn−1, bn+1},
{bn, c0, cn}, {bn, c1, c2n−1}, . . . , {bn, cn−1, cn+1},
{cn, a0, an}, {cn, a1, a2n−1}, . . . , {cn, an−1, an+1}.

(14)

Then, (V,B) is one (v, 3, 2)−covering with L(v, 3, 2) blocks.

Proof. The proof is completely analogous to the proof of the previous theorem.
The only diference is that now pairs {an, bn}, {bn, cn} and {cn, an} are contained in
blocks {an, b0, bn}, {bn, c0, cn} and {cn, a0, an} from (14), respectively, instead in block
{an, bn, cn}. Hence, each pair of the elements of the set V is contained in some block
from B, that is (V,B) is (v, 3, 2)−covering.
B contains 6n · n = 6n2 = L(6n, 3, 2) different blocks, which proves the theo-

rem.

Note: The obtained (6n, 3, 2)−covering is not Steiner system because each of the
pairs {ai, an+i}, {bi, bn+i} and {ci, cn+i} (0 6 i 6 n − 1) is contained in two different
blocks from B.

Finally, we give the construction of (6n + 2, 3, 2)−covering.

2.6. Minimal (6n + 2, 3, 2)−covering
Theorem 2.6. Let v = 6n + 2 and V = {a0, a1, . . . , a2n−1} ∪ {b0, b1, . . . , b2n−1}∪
{c0, c1, . . . , c2n−1} ∪ {∞0,∞1}. Let B be the set of blocks obtained by applying the permu-
tation

p = (a0 a1 . . . a2n−1)(b0 b1 . . . b2n−1)(c0 c1 . . . c2n−1)(∞0)(∞1), (15)

n times to blocks

{a0, b0, b2n−1}, {a0, b1, b2n−2}, . . . , {a0, bn−1, bn},
{b0, c0, c2n−1}, {b0, c1, c2n−2}, . . . , {b0, cn−1, cn},
{c0, a0, a2n−1}, {c0, a1, a2n−2}, . . . , {c0, an−1, an},

{an, b0,∞0}, {an, b0,∞1}, {an, b1, b2n−1}, . . . , {an, bn−1, bn+1},
{bn, c0,∞0}, {bn, c0,∞1}, {bn, c1, c2n−1}, . . . , {bn, cn−1, cn+1},
{cn, a0,∞0}, {cn, a0,∞1}, {cn, a1, a2n−1}, . . . , {cn, an−1, an+1},

{an, bn, cn},

(16)

including block {a0,∞0,∞1}. Then, (V,B) is one (v, 3, 2)−covering with L(v, 3, 2) blocks.
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Proof. The setB contains n(6n+4)+1 = 6n2+4n+1 = L(6n+1, 3, 2) different blocks.
Let us prove that (V,B) is one (v, 3, 2)−covering, ie. that each pair of elements of
the set V is contained in some block from B.

As in theorem 2.4, we prove that each of the pairs {ai, b j}, {bi, c j} and {ci, a j}
(0 6 i, j 6 2n−1), as well as each of the pairs {ai, a j}, {bi, b j} and {ci, c j} (0 6 i, j 6 2n−1,
i , j), is contained in some block from B.

It remains to prove that each pair containing elements∞0 or∞1, is contained in
some block from B. By applying the permutation p, n times to blocks {an, b0,∞0},
{bn, c0,∞0}, {cn, a0,∞0}, we obtain, respectively, the blocks:

{an, b0,∞0}, {an+1, b1,∞0}, . . . , {a2n−1, bn−1,∞0},
{bn, c0,∞0}, {bn+1, c1,∞0}, . . . , {b2n−1, cn−1,∞0},
{cn, a0,∞0}, {cn+1, a1,∞0}, . . . , {c2n−1, an−1,∞0}.

By direct verification, we establish that each of the pairs {ai,∞0}, {bi,∞0} and
{ci,∞0} (0 6 i 6 2n − 1) is contained in some of the specified blocks. In a similar
way, each of the pairs {ai,∞1}, {bi,∞1} and {ci,∞1} (0 6 i 6 2n − 1) is contained in
some block fromB. The pair {∞0,∞1} is contained in additional block {a0,∞0,∞1}.
This proves the theorem.

Note: Obtained (6n + 2, 3, 2)−covering is not Steiner system because each of the
pairs {an+i, bi}, {bn+i, ci} and {cn+i, ai} (0 6 i 6 n − 1), as well as the pairs {a0,∞0}
i {a0,∞1}, is contained in two different blocks from B. In the additional block
{a0,∞0,∞1}, we could use an arbitrary element of the set V instead of the element
a0.

3. CONCLUSION

In this paper, we consider the (v, k, t)−coverings and give a new construction of
the minimal (v, 3, 2)−coverings. We have constructed minimal (v, 3, 2)−covering
for each v (mod 6) separately. In each of six cases, the construction apply
permutation p to the base blocks in order to obtain the remaining blocks of
(v, 3, 2)−covering. Consequently, the equality C(v, 3, 2) = L(v, 3, 2) is proved.
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