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Abstract: The aim of this paper is to find distributions that adequately describe returns of 
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days from 4 October 2005 to 25 December 2009. The obtained models were considered 
in estimating Value at Risk ( VaR ) at various confidence levels. Evaluation of VaR  
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1. INTRODUCTION 

Value at Risk ( VaR ) is a commonly used statistic for measuring potential risk of 
economic losses in financial markets [11, 5, 4, 8]. Using VaR  financial institutions can 
calculate the possible maximum loss over a given time horizon, usually 1-day or 10 days, 
at a given confidence level. Empirical VaR  calculations involve the estimation of lower-
order quantiles, for example 10%, 5% or 1% of the return distribution. While VaR  
concept is very easy, its measurement is a very challenging statistical problem. Risk 
analysis can be done in two stages. First, we can express profit-and-loss in terms of 
returns, and subsequently, model the returns statistically and estimate the VaR  of returns 
by computing appropriate quantile. 

The main problem is related to the estimation of distribution that adequately 
describes the returns. The empirical distribution function of the sample of returns is an 
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approximation of the true distribution of returns which is reasonably accurate in the 
center of the distribution. However, to estimate an extreme quantile such as VaR , we 
need a reasonable estimate not just in the centre of the distribution but in the extreme tail 
as well. Standard VaR  measure presumes that asset returns are normally distributed, 
whereas it is widely documented that they really exhibit non-zero skewness and excess 
kurtosis and, hence, the VaR  measure either underestimates or overestimates the true risk 
[1]. It is well known that the probability distribution of stock returns is fat tailed, which 
means that extreme price movements occur much more often than predicted given a 
Gaussian model [7]. 

Besides the heavy-tailed issue, asymmetry distribution is also often observed in 
financial time series. This property is very important in risk analysis where the long and 
short position investments over a given time period relied heavily on the lower and upper 
tails behaviours. Barndorff-Nielsen [2] implemented skewed distributions that allowed 
upper and lower tails to have dissimilar behaviours. 

In recent years there has been a lot of research conducted on VaR  estimation of 
different returns series [8, 14, 10], but research papers dealing with VaR  calculation in 
the financial markets of EU new member states are very rare. Živkovic [16] applied VaR  
methodology and historical simulation on the Croatian stock market indices in an effort 
to measure Value-at-Risk. He also [15] analysed VaR  models for ten national indexes: 
Slovenia - SBI20, Poland - WIG20, Czech Republic - PX50, Slovakia - SKSM, Hungary 
- BUX, Estonia - TALSE, Lithuania - VILSE, Latvia - RIGSE, Cyprus - CYSMGENL, 
Malta - MALTEX and concluded that use of common VaR  models to forecast VaR  is 
not suitable for transition economies. 

In this paper the relative performance of VaR  models of Belgrade Stock 
Exchange index BELEX15 was investigated. The rest of the paper is organized as 
follows. Section 2 describes the basic concept of VaR  and presents various static models 
for VaR. Evaluating VaR  model adequacy is given in Section 3. Section 4 presents 
empirical results obtained by applying described models to stock index BELEX15. While 
most empirical studies focused only on holding a long position, we also consider a short 
position. Concluding remarks are given in Section 5. 

 
2. STATIC VAR MODELS 

Let  Pt  be the price of a financial asset on day t. A k-day VaR  of a long position 
on day t is defined by 

 

( ( , , )) ,t t kP P P VaR t k α α−− ≤ =  (1) 

where (0,0.5)α ∈ . Similary, a k  day VaR  of a short position is defined by 

.)),,(( αα =≥− − ktVaRPPP ktt  (2) 

Holder of the long position suffers a loss when 0k t t t kP P P−Δ = − < , while a holder of a 
short position loses when 0k tPΔ > . Given a distribution of the continuously 
compounded return log( ) log( )t t kP P−− , VaR  can be determined and expressed in terms 
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of a percentile of the return distribution [4]. If qα  is the α th percentile of the return, 
then VaR  of a long position can be written as 

kt
q PektVaR −−= )1(),,( αα  (3) 

From (3) it can be seen that good VaR  estimates can be produced with accurate forecasts 
of the percentiles αq . So, in further we consider only VaR  for return series. 

We define the 1-day logarithmic return (in further text just return) on day t  as 

1log( ) log( )t t tr P P−= −  (4) 

and denote the information up to time t  by tF . That is, for a time series of returns tr , 
VaR  is such that 

1( )t t tP r VaR F α−< =  (5) 

From this, it is clear that finding a VaR  essentially is the same as finding a 100α % 
conditional quantile. For convention, the sign is changed to avoid negative number in the 
VaR . 

Unconditional parametric models assume that the returns are iid (independent 
identically distributed) with density given by 

1( ) ( ),r r
xf x f μ

σ σ∗
−

=  (6) 

with rf  being density function of the distribution of tr  and rf ∗  being density function of 
the standardized distribution of tr . The parameters μ  and σ  are mean value and 
standard deviation of tr . 
The static VaR  for return tr  for long trading positions is given by  

*
longVaR rαμ σ= +  (7) 

and for short trading positions it is equal to 

*
1shortVaR r αμ σ−= +  (8) 

Where *rα  isα  quantile of *
rf . 

This section will briefly introduce the models of asset return distributions that 
are to be investigated and compared with one another. These include normal, Student t, 
NIG (Normal Inverse Gaussian), hyperbolic and stable distributions. 

 
Fitting returns with Normal distribution 

Assuming that the returns are normal, VaR s are fully determined by two 
parameters: the mean μ  and the standard deviationσ . The most traditional and widely 
applied model of asset returns is the simple normal distribution with density function 
defined by 
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where μ  is the mean, and σ  is the stardard deviation. We fit a normal distribution using 
the Maximum Likelihood (ML) estimates for the mean μ  and the standard deviation 
(σ ) 
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where n   is the number of observations in the return series. 
 

Fitting returns with Student t distribution 

Student t  distribution has become a standard benchmark in developing models 
for asset return distribution because it is able to describe fat tails observed in many 
empirical distributions. Also, its mathematical properties are well known. The density 
function of a scaled Student t -distribution with zero expectation is given by 

( 1) / 22( / 2 1/ 2)( ) 1 ,
( / 2

xf x
bb

ν
ν

νν πν

− +
⎛ ⎞Γ +

= ⋅ +⎜ ⎟
Γ ⎝ ⎠

 (11) 

where 2ν >  (degrees of freedom) and 0b >  (scale parameter). For 2ν >  we have 

( )
2

bVaR X ν
ν

=
−

. When 1ν =  the Student density function is the Cauchy density 

function and when ν →∞  the Student distribution converges to the normal distribution. 
Taking ˆtx r μ= −  we fit t  distribution to the mean adjusted return series and obtain the 

ML estimates, ν̂  and b̂ . 
 

Fitting returns with NIG distribution 

The Normal Inverse Gaussian (NIG) distribution is characterized by four 
parametersα , β ,δ  and μ . Its density function is given by 

2 2
2 2

( )1

2 2

( ( ) )
( )

( )
x

NIG
K x

f x e
x

δ α β β μα δ μαδ
π δ μ

− + −+ −
= ⋅ ⋅

+ −
 (12) 

where 1K  denotes the modified Bessel function of the third kind of order 1. The 
conditions for the parameters are β α≤ | and 0δ > . The parameter α  refers to flatness 
of the density function, while the parameter β  determines a kind of skewness of the 
distribution. The greater the α , the greater the concentration of the probability mass 
around μ  and a negative value of the β  means heavier left tail while a positive value 
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means heavier right tail. The value 0β =  implies the symmetric distribution around 
mean. The parameters σ  and μ  correspond to the scale and location of the distribution. 

 
Fitting returns with hyperbolic distribution 

The hyperbolic distribution had been used in various fields before it was applied 
to finance by Eberlein and Keller [6]. The hyperbolic distribution permits heavier tails 
than the normal distribution because its log-density is a hyperbola, instead of a parabola 
in case of normal distribution. Its density function is defined by 

2 2
2 2

( ) ( )

2 2
1

( ) ,
2 ( )

x x
Hf x e

K
α δ μ β μα β

αδ δ α β
− + − + −−

= ⋅
−

 (13) 

where α , β ,δ  and μ  are parameters and 1K  is the modified Bessel function of the 
third kind with index 1. Parameters α  and β  determine the shape of the density while 
δ  and μ  determine the scale and location. 

There are also other parametrizations for the density function, for example 

2 2 2 2( ( ) ( )) ( ( ) ( ))
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K
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+
 (14) 

with ϕ α β= +  and γ α β= − . 
 

Fitting returns with stable distribution 

Mandelbrot [13] and Fama [7] first proposed the stable distribution to model 
stock returns. Although most stable distributions and their probability densities cannot be 
described in closed mathematical form, their characteristic functions can be expressed in 
closed form. Stable distributions are characterized by four parameters α , β ,δ  and μ  
and the characteristic function of the general stable distribution is given by 
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The characteristic exponent or index α  lies in the half-open interval (0,2] and measures 
the rate at which the tails of the density function decline to zero. The skewness parameter 
β  lies in the closed interval [-1,1] and is a measure of the asymmetry of the distribution. 
The stable distribution can be skewed to the left or right, depending of the sign of β . 
The scale parameter 0σ >  measures the spread of the distribution and the location 
parameter μ  is a rough measure of the midpoint of the distribution. The stable 
distribution with these parameters is denoted as ( , , )Sα β σ μ . 



 D. Đorić, E. Nikolić-Đorić / Return Distribution and Value at Risk 108 

A stable distribution with characteristic exponent α  has moments of order less 
than α  and does not have moments of order greater than α . If 0α =  and 0β = , the 
stable distribution is the Cauchy distribution. If 2α =  and 0β = , the stable distribution 
is the normal distribution. If 1 2α< < , the most plausible case for financial series, the 
tails of stable distribution are fatter than those of the normal and the variance is infinite. 
Stable distributions as a class have the attractive feature that the distribution of sums of 
random variables from a stable distribution retains the same shape and skewness, 
although resulting distribution will change its scale and location parameters. 
Furthermore, they are the only class of statistical distributions having this feature. 

If the returns are assumed to follow a stable distribution, the procedure for 
calculating VaRs remains unchanged. The quantile has to be derived from the 
standardized stable distribution ( ,1,0)Sα β . 

 
3. EVALUATING VAR MODEL ADEQUACY 

Various methods and tests have been suggested for evaluating VaR model 
accuracy. Performance of the VaRs for different pre-specified level α  can be evaluated 
by computing their failure rate for the returns. Statistical adequacy could be tested based 
on Kupiec likelihood ratio test which examines whether the average number of violations 
is statistically equal to the expected rate. 

 
3.1 Failure rate 

The failure rate is widely applied in studying the effectiveness of VaR models. 
The definition of failure rate is the proportion of the number of times the observations 
exceed the forecasted VaR to the number of all observations. If the failure rate is very 
close to the pre-specified VaR level, it could be concluded that the VaR model is 
specified very well. 

 
3.2 Kupiec likelihood ratio test 

For the purpose of testing VaR models in a more precise way, the Kupiec LR 
test for testing the effectiveness of our VaR models is adopted. A likelihood ratio test 
developed by Kupiec [12] will be used to find out whether a VaR model is to be rejected 
or not. The number n  of VaR violations in a sample of size T  has a binomial 
distribution, n ~ ( , )B T p . The failure rate is /n T  and, ideally, it should be equal to the 
left tail probability, p . The null 0H  and alternative 1H  hypotheses are: 

0 1: , :n nH p H p
T T
= ≠  (16) 

where 

1( )t p tp P r VaR F −= <  (17) 

for all t . Then, the appropriate likelihood ratio statistic is 
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2 log( (1 ) ) log( (1 ) )n T n n T nLR q q p p− −⎡ ⎤= − − −⎣ ⎦  (18) 

where /q n T= . This likelihood ratio is asymptotically 2
1χ  distributed under the null 

hypothesis that p is the true probability the VaR  is exceeded. With a certain confidence 
level we can construct nonrejection regions that indicate whether a model is to be 
rejected or not. Therefore, the risk model is rejected if it generates too many or too few 
violations. 

However, Kupiec test can accept a model which incurs violation clustering but 
in which the overall number of violations is close to the desired coverage level. For other 
ways of testing VaR  models see [3]. 

 
4. EMPIRICAL RESULTS 

4.1 Data 

The data used in the paper are the market index BELEX15 of the Belgrade 
Stock Exchange and they are obtained from the BELEX website. BELEX15, leading 
index of the Belgrade Stock Exchange, describes the movement of prices of the most 
liquid Serbian shares (includes shares of 15 companies) and is calculated in real time. 
The sample period covers 1067 trading days from 4 October 2005 to 25 December 2009. 
The plots of the BELEX15 index and returns are given in Figure 1. In this section, the 
return  tr is expressed in percentages, i.e. )log(log100 1−−= ttt PPr . 

 

 

Figure 1: Evolution of BELEX15 daily index (on the left) and daily returns (on the right) 
for period from 4 October 2005 to 25 December 2009 
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Figure 2: Standard deviation, skewness and kurtosis for BELEX15 up to a point 

Results of Augmented Dickey-Fuller test with exogenous constant, linear trend 
and autocorrelated terms of order selected by Schwarz information criterion, applied on 
series of daily index, confirm the presence of a unit root ( 1,1461, 0.9194)ADF p= − = . 
Null hypothesis of presence of unit roots for returns is rejected 
( 22.0975, 0.0000)ADF p= − = . Visual inspection of returns shows that the variances 
change over time around some level, with large (small) changes tending to be followed 
by large (small) changes of either sign (volatility tends to cluster). Periods of high 
volatility can be distinguished from low volatility periods. In order to check if moments 
of order two to four are finite, samples up to date are used to calculate standard deviation, 
skewness and kurtosis (Figure 2). It is evident that after approximately 800 observations 
these sample moments became stable, which supports conclusion about finiteness of 
corresponding population values. 

 
Descriptive statistics 

Summary statistics of returns are given in Table 1. The return series exhibit a 
positive skewness (0.1752) and a high excess kurtosis (11.3420), indicating that the 
returns are not normally distributed. These findings are consistent with plots of the 
normal Q-Q plot, box-plot, histogram and empirical density function (Figure 3). Also 
from the Q-Q plot and box plot it is obvious that outliers and extreme values cause fat 
tails. 
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Table 1: Descriptive Statistics of BELEX 15 index returns 
 mean median min max variance skewness kurtosis 
BELEX 15 -0.0433 -0.0326 -10.8614 12.15676 3.3144 0.1752 11.3420 

 
 

 

Figure 3: Empirical distribution for BELEX15 returns 

 
The significant deviation from normality is confirmed by means of 

statistical tests based on the fact that skewness and excess kurtosis are both equal 
to zero for normal distribution (Jarque-Bera test, D’Agostino omnibus test, 
Doornik and Hansen test). The same conclusion is for the tests based on density 
functions (Anderson-Darling test, Lilliefors test) or properties of ranked series 
(Shapiro-Wilk test). Several applied tests of symmetry (D’Agostino test of 
skewness, Cabilio- Masaro test of symmetry, Mira test, MGG test) are consistent 
in conclusion that asymmetry of returns is not statistically significant (Table 2). 
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Table 2: Statistical tests for distribution of returns 

Tests Test statistics p-values 
Jarque-Bera test 3099.259 0.0000 
Doornik an Hansen test for independent observations 282.9798 0.0000 
Doornik and Hansen for weakly dependent observations  105.3553 0.0000 
D’Agostino test of skewness 1.5389 0.1238 
D’Agostino omnibus test 183.2526 0.0000 
Anderson-Darling test 21.7437 0.0000 
Cramer-von Mises test 3.9743 0.0000 
Lilliefors test 0.0934 0.0000 
Shapiro-Wilk test 0.8975 0.0000 
Chabilio-Masaro test of symmetry 0.3135 0.7539 
Mira test 0.3131 0.7542 
MGG test 0.3818 0.7026 

 
4.2 Static VaR models 

Static models include historical simulation and fitting several distributions to 
empirical returns. Six common values of α  were chosen for illustration. They are 10%, 
5%, 2%, 1% 0.5% and 0.1%. 

 
Historical Simulation 

Historical Simulation of VaR  is based on quantile estimates of return 
distribution quantiles. The sample quantiles can be obtained by several different 
algorithms [9]. Here is an applied algorithm recommended by the same authors. VaR  
values for all chosen α  for both a long and a short position are given in the Figure 4 and 
the Table 3. 

 
Table 3: BELEX15 - VaR by nonparametric Historical Simulation 

Historical simulation 
α  10% 5% 2% 1% 0.5% 0.1% 
Long position -1.860 -2.573 -4.286 -5.398 -7.224 -10.371 
Short position  1.810  2.597  3.870  4.930  6.330  12.108 
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Figure 4: Daily returns and VaR  by nonparametric Historical Simulation 

Fitting Distributions 

Parametric approach for calculating VaR  is based on modelling empirical return 
distribution with some theoretical distribution. Then VaR  is the corresponding quantile 
of theoretical distribution. In this analysis normal, Student, NIG, hyperbolic and stable 
distributions were applied. Distribution parameters were estimated using Matlab MFE 
Toolbox [17]. 

 
Table 4: BELEX15 - Parameter estimates of the theoretical distributions 

 μ  σ  ν  α  β  δ  
Normal -0.0433 1.8197 - - - - 
Student -0.0433 0.01105 3 - - - 
NIG -0.0646 1.1074 - 0.3271 0.0064 - 
Hyperbolic -0.0826 0.0621 - 0.8251 0.0134 - 
Stable 0.0409 - - 1.5448 0.1607 0.858 
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Figure 5: Empirical and theoretical CDF’s and left distribution tails of BELEX15 daily 
returns 

Parameters of the distribution fitted to the data are presented in Table 4. 
Empirical and theoretical cumulative density functions are presented in Figure 5. It can 
be seen that CDF’s of theoretical distributions are much closer to each other than 
corresponding tails of distributions. For both tails NIG distribution is the closest to 
empirical data as seen in Figure 5.  

 
Table 5: VaR  values of BELEX15 returns based on theoretical distributions 

α  10% 5% 2% 1% 0.5% 0.1% 
Long position 

Normal -2.375 -3.036 -3.780 -4.276 -4.730  -5.666 
Student t   -1.760 -2.520 -3.700 -4.820 -6.180 -10.780 

NIG -1.895 -2.806 -4.201 -5.390 -6.676   -9.965 
Hyperbolic -1.987 -2.814 -3.907 -4.733 -5.560   -7.480 

Stable -1.582 -2.276 -3.619 -5.344 -8.124  -22.549 
Short position 

Normal 2.288 2.949 3.693 4.189 4.643   5.579 
Student t   1.680 2.430 3.620 4.730 6.100 10.690 

NIG 1.783 2.721 4.165 5.397 6.732 10.146 
Hyperbolic 1.925 2.779 3.908 4.762 5.616   7.599 

Stable 1.898 2.769 4.512 6.711 10.194 28.070 
 

Also it is evident that tails of empirical distribution and NIG are heavier than 
tails of hyperbolic distribution and thinner than alpha stable distribution. VaR values 
calculated as quantiles of the theoretical distributions for chosen values of α  for long 
and short position are presented in the Table 5. 
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Table 6: VaR  failure rates of BELEX15 returns based on theoretical distributions 
α  10% 5% 2% 1% 0.5% 0.1% 

Long position 
Normal 0.0609 0.0384 0.0243 0.0196 0.0150 0.0084 

Student t   0.1116 0.0515 0.0253 0.0150 0.0084 0.0009 
NIG 0.0975 0.0440 0.0215 0.0103 0.0075 0.0009 

Hyperbolic 0.0909 0.0422 0.0243 0.0150 0.0093 0.0046 
Stable 0.1303 0.0666 0.0272 0.0103 0.0037 0.0000 

Short position 
Normal 0.9296 0.9615 0.9784 0.9840 0.9878 0.9941 

Student t   0.8836 0.9418 0.9774 0.9878 0.9943 0.9971 
NIG 0.8958 0.9540 0.9831 0.9943 0.9962 0.9971 

Hyperbolic 0.9071 0.9568 0.9812 0.9878 0.9943 0.9971 
Stable 0.9043 0.9568 0.9868 0.9953 0.9971 0.9990 

 
 
 

 

Figure 6: VaR  - Normal (on the left), NIG (on the right) 

Realized values of failure rates are presented in the Table 6. In almost all cases 
for long position failure rate of NIG distribution is the closest to α  value. In the case of 
short position the same conclusion is valid for 1%α ≥ . 
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Figure 7: VaR  - Hyperbolic (on the left), stable (on the right) 

Table 7: Violations of VaR  values for theoretical distributions 
α  10% 5% 2% 1% 0.5% 0.1% 

Long position 
Expected 107 53 21 11  5 1 
Normal   65 41 26 21 16 9 

Student t   119 55 27 16  9 1 
NIG 104 47 23 11   8 1 

Hyperbolic   97 45 26 16 10 5 
Stable 139 71 29 11   4 0 

Short position 
Expected 959 1013 1045 1055 1061 1065 
Normal 991 1025 102 1049 1053 1060 

Student t   942 1004 1004 1053 1060 1063 
NIG 955 1017 1017 1060 1062 1063 

Hyperbolic 967 1020 1020 1053 1060 1063 
Stable 964 1020 1020 1061 1063 1065 

 
From the Figure 6 and Figure 7 we can see VaR  values for different α  and for 

Normal, NIG, hyperbolic and stable distributions. It is obvious that normal distribution 
underestimates while stable distribution overestimates VaR  values. 

Table 7 contains the number of VaR  value violations for different distributions 
together with expected values. The conclusion is that none of the considered distributions 
are superior for all α . For long position and 0.1α =    and  0.2α =  NIG is better than 
other considered distributions. For 0.01α =  violations of VaR  for NIG and Student t  
are equal to expected values and for 0.001α =  the same conclusion is valid for NIG and 
stable distributions. In the case of short position NIG is superior for 0.01α = and 

0.05α = . From the Table 8 and Table 9 it follows that only for Student t  and NIG 
distribution Kupiec test is not significant for all α  values. 
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Table 8: Kupiec test for α = 10%, α  = 5% and α  = 2% 

10% 5% 2% Fited 
distribution LR p LR p LR p 

Long position 
Normal 20.6678 5.4e-6 3.2349 0.072 0.9804 0.322 

Student t   1.5504 0.213 0.0565 0.812 1.4252 0.232 
NIG 0.0709 0.789 0.8149 0.366 0.1317 0.716 

Hyperbolic 0.9874 0.320 1.4332 0.231 0.9804 0.322 
Stable 10.085 0.001 5.6287 0.017 2.5403 0.110 

Short position 
Normal 11.4903 6.e-4 3.2349 0.072 0.1317 0.716 

Student t   3.0146 0.082 1.4235 0.232 0.3304 0.565 
NIG 0.1993 0.655 0.655 0.540 0.5566 0.455 

Hyperbolic 0.6152 0.432 1.1013 0.293 0.0851 0.770 
Stable 0.2234 0.636 1.1013 0.293 2.9147 0.087 

 
Table 9: Kupiec test for α  = 1%, α  = 0.5% and α  = 0.1% 

1% 0.5% 0.1% Fited 
distribution LR p LR p LR p 

Long position 
Normal 7.8986 0.0004 13.9433 1.8e-4 22.5909 2.e-6 

Student t   2.3419 0.125 2.1024 0.147 0.0041 0.948 
NIG 0.0108 0.917 1.1641 0.280 0.0041 0.948 

Hyperbolic 2.3419 0.125 3.2652 0.070 7.6018 0.005 
Stable 0.0108 0.917 0.3652 0.545 2.1330 0.144 

Short position 
Normal 3.2264 0.072 7.798 0.004 10.889 9.6e-4 

Student t   0.4849 0.486 0.0813 0.775 2.3437 0.125 
NIG 2.4436 0.117 0.3652 0.545 2.3437 0.125 

Hyperbolic 0.4849 0.486 0.0813 0.775 0.3140 0.575 
Stable 3.7797 0.051 1.2166 0.270 0.7510 0.386 

 

5. CONCLUDING REMARKS 

The purpose of this paper has been to consider several alternative models of 
return distribution for BELEX15 and to compare predictive ability of VaR  estimates 
based on them. First, the data are analysed in order to get an idea of the stylized facts of 
stock market returns. Throughout the analysis, a holding period of one day was used. 
Various values for the left tail probability level were considered, ranging from the very 
conservative level of 0.01 percent to the less cautious 10 percent. 

Evaluation of applied methods was done by means of back-testing for the whole 
sample. It was not possible to perform out of sample analysis because of the lack of data. 
In the case of BELEX15 index returns asymmetric behaviour was not discovered, 
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although it is typical for many stock indexes. Since distribution of log-returns exhibits 
leptokurtosis, several models of leptokurtic distribution were chosen: Student t , NIG, 
hyperbolic and stable. For both tails NIG distribution is the closest to empirical data. 
Also, estimated NIG distribution has finite moment of fourth order, which is in 
accordance with empirical up to a point analysis given in Figure 2. However, based on 
evaluation of VaR , Student t  and NIG distribution are acceptable for all considered α -
values. Although static models can not reproduce volatility clustering, they may be 
successful in modelling tails of distribution and computing VaR  of the Belgrade Stock 
Exchange index BELEX15. 
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