
Yugoslav Journal of Operations Research
21 (2010), Number 1, 11-28
DOI: 10.2298/YJOR1101011D

ON-LINE COMPUTATION AND MAXIMUM-WEIGHTED
HEREDITARY SUBGRAPH PROBLEMS

Marc DEMANGE
ESSEC Business School, Bucharest, Romania,

 demange@essec.edu
Bernard KOUAKOU

Université de Montréal, Montréal, Canada,
bernard.kouakou@gmail.com

Eric SOUTIF

CEDRIC, CNAM, Paris, France,
eric.soutif@cnam.fr

Received: June 2009 / Accepted: March 2011

Abstract: In this paper1 we study the on-line version of maximum-weighted hereditary
subgraph problems. In our on-line model, the final instance (a graph with n vertices) is
revealed in t clusters, nt ≤≤2 . We first focus on an on-line version of the maximum-
weighted hereditary subgraph problem. Then, we deal with the particular case of the
independent set problem. We are interested in two types of results: the competitive ratio
guaranteed by the on-line algorithm and hardness results that account for the difficulty of
the problems and for the quality of algorithms developed to solve them.

Keywords: On-line algorithms, hereditary property, independent set, competitive ratio.

MSC: 68Q25, 68W40, 90C27, 90C35

1. INTRODUCTION

On-line computation aims to solve combinatorial optimization problems with
the constraint that the instance is not a priori completely known before one begins to
solve it. In other words, the data set is revealed step-by-step and one has, at each step, to

1 A preliminary extended abstract appeared in the Proceedings of 16th International Symposium on
Algorithms and Computation, ISAAC 2005.

 M. Demange, B. Kouakou, E. Soutif / On-Line Computation 12

irrevocably decide on the final solution dealing with this step. On-line algorithms
concern a large class of problems subjected to time constraints (decisions are made
before one knows all the data).
In [13], a general framework for on-line problems is drawn. An on-line problem is
defined by:

- a combinatorial optimization problem P,
- a set of rules R detailing how the final instance is revealed,
- a set of rules 'R the algorithm has to respect when making decisions.

The triplet (, , ')P R R is also called on-line version of P and (, ')R R is called an on-line
model. This definition encapsulates usual on-line framework but also the so-called “semi
on-line” case for which the instance is revealed in a limited number t of steps (t > 1).

1.1. Maximum weighted hereditary subgraph problems

In this paper, we deal with on-line versions of the problem of finding, in a
weighted graph G, a maximum-weighted subgraph satisfying a non-trivial hereditary
property π .

Let us consider a graph property π assigning to each graph G a value π (G)
belonging to {0, 1}. G is said to satisfy the property π if and only if π (G) = 1.

If G = (V, E) is a graph, then a set of vertices 'V V⊂ is said to satisfy π if and
only if the induced subgraph G['V] satisfies π.

Definition 1. A graph property π is hereditary if, whenever it is satisfied by a graph, it is
also satisfied by every induced subgraph; it is non-trivial if it is satisfied by an infinite
number of graphs and unsatisfied by an infinite number of graphs.

Let us also point out that, since π is assumed to be non trivial, then for every n
there exists a graph of order at least n satisfying π ; by heredity it immediately follows
that for every size 1≥n there exists a graph of order n satisfying π . In particular an
isolated vertex trivially satisfies π .

Definition 2. Given a graph G = (V, E), the maximum hereditary subgraph problem, HG,
consists of finding a subgraph of G of maximum order satisfying a given non-trivial
hereditary property π.

WHG denotes the weighted version of HG: the input is a weighted graph (each
vertex x has a weight w(x)) and one looks for a maximum-weighted subgraph satisfying
π.

More precisely, HG denotes a class of problems, one for each property.
Nevertheless, when no ambiguity occurs, every reference to (W)HG corresponds to a
specific property.

This class contains natural combinatorial problems such as the maximum
independent set problem, the maximum clique problem and the maximum k-colorable
subgraph problem.

Some on-line versions of HG have been studied in [6]. The weighted version,
WHG, of HG has also been handled in the on-line framework (see in [5]). However the
method used only works for the case where the instance is revealed in two steps.

 M. Demange, B. Kouakou, E. Soutif / On-Line Computation 13

This paper is devoted to extend the results to the case where the instance is revealed in t
steps, with t ≥ 2.

1.2. On-line models and competitive analysis

In this paper, we deal with the following on-line version of WHG, denoted by
LWHG(t), where t ≤ n:

R : the graph G is revealed in t steps. At each step, a weighted subgraph Gi = (Vi, Ei)

(called cluster) of G is revealed together with the edges between vertices of iG and
already revealed vertices. Consequently, at step i the already revealed graph is

1[...]iG V V∪ ∪ the subgraph of the whole instance induced by 1[...]iV V∪ ∪ . The total
number of vertices and the total weight are supposed to be known in advance.

'R : at each step, one irrevocably decides which new vertices are introduced in the
solution.

The hypothesis that the total number of vertices and the total weight are known

in advance is not restrictive. Indeed, supposing these quantities unknown, it is easy to see

that no interesting result can be found: only the trivial ratio min

min()
W

W G W−
can be

guaranteed, where W(G) and Wmin denote respectively the total and the minimum weight of
the final graph G (see below for a precise definition of the competitive ratio).

We also note that in the notation LWHG(t), t can be either a constant or a
function on n. We will essentially consider “semi-on line” cases for which t is a constant
or eventually nt << .

In fact, it is pointed out in [6] that even in the unweighted case, if vertices are
revealed one by one (t = n), then no significant positive result can be stated. If P denotes
a sub-problem of WHG - for instance the unweighted case (HG) or the maximum
(weighted) independent set problem (W)IS - we also denote by LP(t) the related on-line
version.

Such a model can be equivalently seen as a two players game ruled by R and
'R . One player, the adversary, generates on-line requests according to rules R. The other

player is the algorithm; it responds to requests by taking decisions that allow constructing
the solution over the time. For a maximization problem, the adversary's goal is to
minimize the ratio of the algorithm's value to the optimal value, while the on-line
algorithm's goal is to maximize it.

In the on-line framework, the so-called competitive ratio is a popular way for
analyzing the quality of an algorithm.

Let us consider a maximization on-line problem P , an instance σ of P and an
algorithm LA for solving P . Furthermore, we consider a function)(ncLA . Let)(σLA
denote the value of the solution of P computed by the algorithm LA and ()β σ the on-
line optimal value. More precisely ()β σ can be seen as the best value an algorithm can
return if the way the graph is revealed is known in advance.
In most cases, and especially for LWHG(t), the on-line optimal value and the off-line
optimal value are equal.

 M. Demange, B. Kouakou, E. Soutif / On-Line Computation 14

The algorithm LA is said to guarantee the competitive ratio)(ncLA if, for every
instance σ of P we have:

)()()(σσβ LAncLA ≤×)()()((σβσ ≤× LAncLA for a minimization problem).
LA is also said to be)(ncLA -competitive.

Approximation ratio

The competitive ratio looks like the approximation ratio used in polynomial-
time approximation theory. This allows considering on-line computation in the continuity
of approximation. In the case of approximation, given a polynomial-time algorithm A
computing, for every instance σ of an NP-hard (off-line) maximization problem a feasible
solution, it is said to guarantee an approximation ratio)(nAρ if, for everyσ instance of
order n, the approximated value)(σA satisfies:

)()()(σσβρ AnA ≤×)()()((σβσρ ≤× AnA for a minimization problem),
where ()β σ denotes the optimal value of the instance.

For LWHG(t) (with nt <<), we are interested in links between off-line and on-
line algorithms. Indeed, whenever a sub-instance is revealed, one can use an (off-line)
approximation algorithm to solve this current sub-instance. A central question in this
work is how it is possible to exploit (polynomial-time) algorithms in order to devise
(polynomial-time) on-line algorithms and moreover, is it possible to transfer performance
guarantees from off-line to on-line framework?

We now recall that both HG and WHG can be (see [8]) polynomially
approximated within O(log /n n) and this ratio is improved to O(2log /n n) for the
maximum and weighted-maximum independent set problems ([4,11]). All these ratios are
of the form () /f n n , where is an increasing function with n and () /f n n decreases for
n κ≥ where κ is a fixed number). Moreover, every algorithm can easily return a solution

which value is at least the average ()w G
n

of the weights system. All of this motivates the

following hypotheses H, used in the sequel:

Hypotheses H:
Let FWA be a ()nρ -approximation algorithm for WHG. We will suppose that:

1. FWA guarantees a ratio of the form ()() f nn
n

ρ = , where f is an increasing function

with n , and ρ decreases for n κ≥ , with 0κ ≥ .

2. Algorithm FWA satisfies ()(()) w Gw FWA G
n

≥ , G∀ (the ratio 1 / n is always guaranteed,

i.e. () 1f n ≥).

Structure of the paper

 M. Demange, B. Kouakou, E. Soutif / On-Line Computation 15

In section 2, we show that LWHG(t) reduces to WHG, which allows to derive
competitive algorithms from approximation ones. More precisely, if the on-line case
admits an approximation ratio of the form () /f n n , then there is an on-line algorithm with
a competitive ratio)(GcLWA satisfying:

n
nf

nf
nfGc

t

LWA
)(

)(1
)(1)(

/1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

≥

For t = 2, it leads to a result of [5] which was obtained by adapting to LWHG(2)
the methodology used for LHG(t). The problem of generalizing theses results to
LWHG(t), 3t ≥ , was raised in this previous paper. The proof of our result is totally
different while the on-line algorithm is quite similar. The main idea can be described as
follows: at each step, one computes a solution of the problem restricted to the new cluster
by using the off-line approximation algorithm (the subroutine) and then one decides
either to include the whole solution performed if its value is sufficiently good or to reject
it in the opposite case. Such an algorithm is called a threshold algorithm.

In section 3 we perform lower bounds for a class of algorithms including
threshold ones. The main result is shown in the case where property π is either “clique”
or “independent set”. Then, we adapt it to a more general subclass of hereditary
problems. It points out that, for a large class of WHG, our analysis is tight.

Finally, section 4 deals with the on-line independent set problem for which we
propose a hardness result that bounds below the competitive ratio of any algorithm (not
only threshold ones). It points out that, for this problem, threshold algorithms are almost
optimal (among on-line algorithms).

Notations

We will consider only simple undirected graphs G = (V, E), n V= denotes the
order of G. Every edge in E will be denoted either by (i, j) = (j, i) or simply by ij = ji.

(,)G V E= , { }(,), ,E i j i j ij E= ≠ ∉ denotes the complement of G. Given 'V V⊂ , [']G V
denotes the subgraph of G induced by 'V . An independent set of G is a set of vertices
which are mutually not linked by an edge: 'V V⊂ , (,) ' 'i j V V∀ ∈ × , ij E∉ ; in other
words [']G V has no edge. A clique of G is a set of vertices 'V so that [']G V is a complete
graph or, equivalently, 'V is an independent set of G .

2. COMPETITIVE RATIO FOR LWHG(T)

This section is devoted to prove the following result:
Theorem 1. Suppose that WHG admits a polynomial-time ()nρ -approximation

algorithm
n
nf

nwithFWA
)(

)(=ρ ; then, under hypotheses H, there exists an on-line

polynomial-time algorithm LWA , for LWHG(t), achieving for every graph G of order n a
competitive ratio of:

 M. Demange, B. Kouakou, E. Soutif / On-Line Computation 16

)(
)(1

)(1)(
/1

n
nf

nfGc
t

LWA ρ
−
−

≥

Moreover, for ε > 0 and n large enough, we have:

)(
)()1()(

/1

n
nfGc

t

LWA ε−≥

Proof. Let us consider the following algorithm LWA that accepts as input a graph G
revealed in t subgraphs (called clusters) 1 2, ,..., tG G G of order 1 2, ,..., tn n n , respectively, and
returns the solution LWA (G) for problem LWHG(t).

It can be seen as a threshold-algorithm with threshold

t
i

i

i nrf
nr
GwW /1)()(

−
−

−

that only depends on the already known part of the instance.

Algorithm LWA

1. 1;i ←
2. ()W w G←
3. ;r n←
4. while w (FWA 1/()()) () ti

i i
i

W w GG f r n
r n
−

< −
−

 and i t< do

5. ();iW W w G← −
6. ;ir r n← −

7. 1;i i← +
8. end while
9. return)(GLWA ← FWA (iG)

This algorithm is polynomial in the order n of the instance G since we use at

most n times (t n≤) the polynomial algorithm FWA for instances of order lower than n.
For 1i t≤ − , we set 1[...],i i tR G V V+= ∪ ∪ and 1 ... ;i i tr n n+= + + the condition of

the while loop (in the algorithm LWA) becomes: w (FWA 1/()()) () ti
i i

i

w RG f r
r

< .

Denote by k t≤ the value of i at the end of the while loop. We will distinguish
two cases, whether the algorithm returns a non empty solution before the last cluster (i.e.,
k < t) or not (i.e. k = t).
In the first case (k < t), revisiting the while loop in algorithm LWA , the following
statements hold:

w(FWA 1/()()) () ti
i i

i

w RG f r
r

< i k∀ < (1)

 M. Demange, B. Kouakou, E. Soutif / On-Line Computation 17

k

kt
k

k

k
k r

Rwrf
r
RwGFWAw)()()())((/1 ≥<

In the second case (k = t), only relation (1) holds.
We first point out the following result which will be used in the sequel.

Lemma 1.

,i k∀ < w(FWA
1

()) ()
k

t
iG f n

−

≤ (FWA ())kG
Proof. (of lemma 1) Let us first consider that k < t. For every i < k, since

1() () ... () ()i i k kw R w G w G w R+= + + + , relation (1) becomes:

w(FWA ())iG < 1/1

1

() ... () () () .
...

ti k k
i

i k k

w G w G w R f r
n n r

+

+

+ + +
+ + +

By using item 2 of hypotheses H we deduce:

w(FWA ())iG 1/1 1

1

(()) ... (()) (()) ()
...

ti i k k k k

i k k

n w FWA G n w FWA G r w FWA G f n
n n r

+ +

+

+ + +
≤

+ + +

which implies

))((sup)())((
1

/1
q

kqi

t
i GFWAwnfGFWAw

≤≤+
≤ (3)

Then, by a simple backward induction, we get the result. By setting 1i k= − , the

inequality (3) initializes the induction process, i.e., w(FWA (kG)) 1/() (()).t
kf n w FWA G≤

Let us then consider the following induction hypothesis: there exists j, 1 < j < k so that:

(()) () (()) ,..., 1
k i

t
i kw FWA G f n w FWA G i j k

−

≤ ∀ = − (4)

By using relation (3), we have:

))((sup)())((/1
1 q

kqj

t
j GFWAwnfGFWAw

≤≤
− ≤ (5)

On the other hand, since expression (4) holds for all 1,..., 1i k= − (and even for i = k), and

by using relations () 1f n ≥ and sup () ()
k q k j

t t
j q k

f n f n
− −

≤ ≤
= we have:

)))(()((

)))(()((sup))((sup

k
t

jk

k
t

qk

kqj
q

kqj

GFWAwnf

GFWAwnfGFWAw

−

−

≤≤≤≤

≤

≤
 (6)

 M. Demange, B. Kouakou, E. Soutif / On-Line Computation 18

Then, relation (5) implies:
(1)

1(()) () (())
k j

t
j kw FWA G f n w FWA G

− +

− ≤ (7)

The case k = t is similarly solved by putting w(tR)= 0 and tr = 0, which
concludes the proof of lemma (1). ∎

To prove the theorem, consider two cases, whether k < t or k = t.

Case 1: algorithm stops with k < t.
Heredity implies that 1() () ... () ().k kG G G Rβ β β β≤ + + +

Moreover, 1/() () (/ ()) (()),t
k k k k kR w R r f r w FWA Gβ ≤ ≤ which implies

1 1
1 1 1/() () (()) ... () (()) (()).

()
k

k k kt
k

rG n w FWA G n w FWA G w FWA G
f r

β ρ ρ− −≤ + + +

Since f increases and () () /n f n nρ = decreases (item 1 of hypothesis H), we have:

1
1

1() () ((()) ... (()) () (()))
t
t

k kG n w FWA G w FWA G f n w FWA Gβ ρ
−

−≤ + + +
Then lemma 1 implies

2 1 1
1() () (() ... () 1 ()) (())

t t
t t t

kG n f n f n f n w FWA Gβ ρ
− −

−≤ + + + +

and finally

1
1

1 ()() () (())

1 ()
k

t

f nG n w FWA G

f n

β ρ − −
≤

−
The related ratio is:

1

() 1 ()()
() 1 ()

tw S f nn
G f n

ρ
β

−
≥

−

Case 2: The algorithm runs until the tht iteration. By using similar arguments as
previously, we get:

1() () ... ()tG G Gβ β β≤ + +
1 1

1 1() () (()) ... () (())t tG n w FWA G n w FWA Gβ ρ ρ− −≤ + +
1

1() () ((()) ... (()))tG n w FWA G w FWA Gβ ρ −≤ + +
1 1

1() () (() ... () 1) (())
t
t t

tG n f n f n w FWA Gβ ρ
−

−≤ + + +

 M. Demange, B. Kouakou, E. Soutif / On-Line Computation 19

So we have:
1

() 1 ()()
() 1 ()

tw S f nn
G f n

ρ
β

−
≥

−

Since f is supposed to infinitely increase, the asymptotic competitive ratio of

1/[()](1)
tf n

n
ε−

immediately follows. ז

As the off-line problems WHG and WIS are respectively approximated within logn
n

and

2log n
n

we deduce:

Corollary 1. For fixed values of t and n large enough,
(i) LWHG(t) admits a polynomial 1/((log) /)tO n n -competitive algorithm;
(ii) LWIS(t) admits a polynomial 2/((log) /)tO n n -competitive algorithm.

If we also consider not polynomial-time algorithms, then the result also holds
with () 1nρ = . It leads to the following corollary.
Corollary 2. For fixed values of t, if the threshold algorithm LWA is parameterized by an
optimal off-line algorithm (i.e., () 1nρ =) then, LWA guarantees for LWHG(t) (and also

for LWIS(t)) the competitive ratio
1 1

()tO n
−

.

3. LIMIT OF THRESHOLD ALGORITHMS (HARDNESS RESULT)

In this section, we first devise hardness results limiting the competitiveness of
threshold algorithms if the hereditary property is either “clique” or “independent set”.
Then, we give some results of more general cases. To this purpose, we use some
properties P, 'P and ''P defined in [3]. That will allow us to treat both clique and
independent set problems. P is the following property.

P: For any graph 1 1 1(,)G V E= , there exists a graph G = (V, E) such that V =

1 2 1 1{ }, []V v G V G∪ = and 2{ }v is a maximal subset of V satisfying π.

It can be easily shown that P holds if and only if π is either clique or independent set. The
following properties 'P and ''P , used in the sequel, can be immediately deduced from P.

'P : For any graph 1 1 1(,)G V E= and for any size 2n , there exists a graph G = (V, E) so
that 1 2 ,V V V= ∪ 2 2()card V n= , 1 1[]G V G= and every single set 2 2{ }x V⊂ is a maximal
subset of V satisfying π.

 M. Demange, B. Kouakou, E. Soutif / On-Line Computation 20

''P : For any graph 1 1 1(,)G V E= and for any size 2n , there exists a graph G = (V, E) such
that 1 2 ,V V V= ∪ 2 2()card V n= , 1 1[]G V G= , 2V satisfies π and every single set

2 2{ }x V⊂ is a maximal subset of 1 2{ }V x∪ satisfying π.
For example, if π is “clique” then, for P, we set 1 2 1({ },)G V v E= ∪ (2v is an

isolated vertex) while for 'P we have 1 2 1(,)G V V E= ∪ , i.e., 2V is an independent set and
each vertex in 2V has no link with vertices of 1V . As for ''P ,

1 2 1 2 2(, ())G V V E P V= ∪ ∪ where 2() {(,) , }.P X x y X X x y= ∈ × ≠ In other words, 2V is a clique
and each vertex in 2V is not connected to a vertex in 1V .
If π is “independent set” then, for P, 1 2 1 1 2({ }, { }),G V v E V v= ∪ ∪ × for 'P ,

1 2 1 2 2 1 2(, ()),G V V E P V V V= ∪ ∪ ∪ × and for ''P , 1 2 1 1 2(,).G V V E V V= ∪ ∪ ×
Let us now consider an approximation algorithm FWA for WHG satisfying the

set of hypotheses H. In [3], for the problem LWHG(2), a lower bound of ()
2 1

f n
n

μ+

of the competitive ratio of a threshold algorithm is devised by assuming the following
hypothesis '()μH :

there exists G1, a graph of order n1 so that:

1 1 1 1 1() () () (1) () ().G n G G nβ ρ μ β ρ≤ < +FWA
If μ is close to 0, then '()μH only means that the approximation ratio for FWA

cannot be significantly improved.
We show that this result can be generalized for any 2t ≥ ; moreover, it shows

that the analysis performed in the proof of theorem 1 is asymptotically tight.

Proposition 1. Let us consider that π is either “clique” or “independent set”. If FWA
satisfies H and '()μH for a given approximation ratio () () /n f n nρ = and 0μ > , then the
corresponding threshold algorithm (algorithm LWA, section 2) cannot guarantee the
competitive ratio

1
11 ()(1) .

t
t f nt

n
μ

−
+

The result holds even if the sequence of weights is known at the beginning of the on-line
process and if clusters are of the same size.
Proof. FWA satisfies '()μH . So there exists a graph 1G of order 1n such that

1 1 1 1 1() () () (1) () ().G n G G nβ ρ μ β ρ≤ < +FWA We consider t-1 positive real numbers

1 2, ,..., tx x x such that:

1 2 1 1 1() ... (1) () ()tG x x x G nμ β ρ< < < < < +FWA (8)

Set

1 1

(1) () , 2.
k t k

k t t
k

nxw f n k
t

μ
− − −

= + ∀ ≥

 M. Demange, B. Kouakou, E. Soutif / On-Line Computation 21

We derive from relation (8):
1

1

1 1 1
()() () () (1)

t
t

t
t

f nG n G t w
n

β ρ μ

−

≤ < +FWA
 (9)

1 2
1 2

1
() ()(1) (1)

t k
t k t kt t

t t
k k

f n f nt w t w
n n

μ μ

− −
− + − +

−+ < +
, 3k t k∀ ≥ ≥ (10)

1
1

2 1 1
()(1) (1) () ()

t t
t f nt w G n

n
μ μ β ρ

−

+ < +
 (11)

We apply the algorithm LWA to a graph of order 1n tn= and of total weight

1 2() ... tW w G w w= + + + . We also suppose that 1G is revealed at the first step.
Then, we apply the following strategy (rules (1) and (2)) for the adversary to

reveal a graph with n vertices and total weight W. Recall that the on-line problem can be
seen as a game between two players: the adversary and the algorithm. Here, to derive
hardness results, the adversary aims to reveal an instance for which the algorithm
performs badly.
rule (1): For i < t, if the algorithm selects some vertices in iG , then the next clusters

, 1,...,jG j i t= + to be revealed are obtained by applying ''P to the graph

1 1 2' [...]iG G V V V= ∪ ∪ ∪ . Moreover, each , 1jG j i≥ + , has no connection with the

subgraph 1 2[...]iG G V V V= ∪ ∪ ∪ and each vertex in , 1jG j i≥ + , is of weight
1

jw
n

.

For the independent set problem, each , 1jG j i≥ + is an independent set of

order 1n ; every vertex of jG is of weight
1

jw
n

and is linked to all vertices

in 1[...]iG V V∪ ∪ : (For the clique problem, jG is a clique with no link with

1[...]iG V V∪ ∪).
rule (2): For i < t, if the algorithm does not select vertices in ,iG then 1iG + is a graph of

order 1n satisfying 'P where the graph 1 1 2' [...]iG G V V V= ∪ ∪ ∪ plays the role of

1G in 'P . Every vertex in 1iG + has a weight equal to 1

1
.iw

n
+

For the independent set problem, 1iG + is a clique with vertices of weight 1

1

iw
n
+

and each vertex in Gi+1 is linked to all vertices in 1 2[...]iG V V V∪ ∪ ∪ . (With a
similar construction one can deal with the case of the clique problem).

We distinguish 3 cases:
Case 1:

 M. Demange, B. Kouakou, E. Soutif / On-Line Computation 22

Suppose that at least one vertex in 1G has been selected by LWA. In this case,
the algorithm selects FWA(1G) vertices in 1G and rule (1) is applied. The construction of
the graph prevents to select any other vertex and consequently, LWA(G) = FWA(1G).
On the other hand, as 2G satisfies property π, we get: 2()G wβ ≥ .
According to (9) and by successive applications of (10) we get:

1
111 2() ()(1)

() ()

t

tG w f nt
G G n

μ
β β

−
< +

FWA

 (12)
1

11() ()(1)
()

t

tG f nt
G n

μ
β

−
< +

LWA

 (13)

Case 2:
Suppose that the first selected vertices belong to iG , for 1 < i < t. In this case,

LWA(G) = FWA(iG) since rule 1 is applied to i. Moreover, since 1iG + satisfies π, we
have 1() iG wβ +≥ , and the construction of iG implies:

LWA(G) = FWA(iG) =
1

.i iw tw
n n

=

Note that relation (8) and hypothesis '()μH imply that 1(1)i ix xμ +< + , for
1,... 1;i t= − then, according to (9) and (10) we get:

Hence,
1 11

() (1) () (),t t
in G t f n Gμ β

−
< +FWA and finally:

1
11(G) ()(1) .

()

t
t f nt

G n
μ

β

−
< +

LWA

 (14)

Case 3:
Let us finally consider the case where the algorithm does not select any vertices in the
subgraphs 1 2 1, ,..., .tG G G − In this case it returns FWA(tG)) which consists of one vertex in

tG , since rule (2) is applied at iteration t-1. Therefore,
1

() ,t t
t

w twG
n n

= =FWA and

according to (b) and (c) we have:
1

1
1

1
1

()() () (1) .
(1) ()

t
t

t
t

f n nG G t w
n f n

β β μ
μ

−

≥ > +
+

As 1n tn= and f is an increasing function, the previous inequality implies that:

1
1

1
() ()(1) (1) (1)

i i
t i t it t

t t
i i

f n f nt w t w
n n

μ μ μ

−
− + −

++ < + +

 M. Demange, B. Kouakou, E. Soutif / On-Line Computation 23

1 11
() ()

(1) ()
t

t t

nG G

t f n

β

μ
−

>

+

FWA

So

1
11() ()(1)

()

t
tG f nt

G n
μ

β

−
< +

LWA

 (15)

Relations (13), (14) and (15) imply that, in every case
1

11 ()() (1) ,
t

t f nc n t
n

μ
−

< +LWA which concludes the proof.

Corollary 3. Under hypotheses H and '()μH , the competitive ratio of LWA satisfies for
any ε and for n large enough:

1 1

() ()(1) () (1)
t tf n f nc n t

n n
ε μ− < < +LWA

These bounds are tight since the ratio between the upper and the lower bounds is

equal to (1) .
1

t μ
ε

+
−

Note that proposition 1 does not use the whole structure of threshold algorithms.
It only uses the existence of 1G and the fact that the on-line algorithm picks at each step at
most as many vertices as algorithm FWA. In particular, no specific threshold is used in
the proof; it leads to the following result.

Corollary 4. Let us consider that π is either “clique” or “independent set”. Under
hypotheses H and '()μH for every on-line algorithm FWALA based on FWA in the sense
that it selects, at each step, either no vertex (an empty sub-solution) or some of vertices of
the solution performed by FWA for the current cluster then, for every ε > 0 and for n
large enough we have:

1

()() (1)
tf nc n t

n
μ< +

FWALA

An extension to more general hereditary properties

The idea of the previous result can be raised in a more general context, obtained
by a natural extension of property 'P , called the k-boundary condition and introduced in
[3].
Definition 3. [3] Let π be a hereditary graph property and let k be an integer. π satisfies
the k-boundary condition if, for every 1n k≥ + , there exists a graph G of order n such that
no induced subgraph of G of order k + 1 does satisfy π .

 M. Demange, B. Kouakou, E. Soutif / On-Line Computation 24

Many hereditary graph properties satisfy this condition for any k (for instance
independent set, clique, planar, acyclic, ...). Moreover, it can be simply shown that this
condition exactly corresponds to the fact that π is false for some cliques or independent
sets. On the other hand, if π is such a property, then it satisfies the following property
(see for instance [3]):

'kP : For any graph 1 1 1(,)G V E= and any 2n k≥ , there exists a graph G = (V, E) such that

1 2V V V= ∪ , 1 1G V G= , 2 2V n= and 2 2'V V∀ ⊆ with 2'V k= ,
and 2 2\ ' , ' { }v V V V v∀ ∈ ∪ does not satisfy π.

To generalize proposition 1, property 'kP will play the same part as 'P . Let us
also point out a property '''P that will replace ''P .
Proposition 2. [3] Let π be a non trivial hereditary property, let 1 1 1(,)G V E= be a graph
and 1 1'V V≠ be such that 1'V is a maximal subset of 1V satisfying π in 1G ; then, the
following property '''P holds:

'''P : for any 2n k≥ , there exists a graph G = (V, E) such that
[]1 2, 1 1 2 2 2, ,V V V G V G V n V= ∪ = = satisfies π and 1'V is a maximal subset of V satisfying

π.
Proof. (sketch) The idea is very simple: since π is non-trivial there is a graph 2G of
order 2n satisfying π. Then, pick a vertex 1 1\ 'v V V∈ . Edges between 1G and 2G are
defined in such a way that every vertex in 2V has the same neighborhood in 1V as v. ∎

We also suppose (this is not restrictive) that FWA computes maximal solutions
(for⊂). Then, we consider an on-line algorithm selecting, at each step i, either no vertex
or FWA(iG).

Let us briefly sketch how to generalize proposition 1. If the on-line algorithm
decides to select some vertices at any step, then by assuming that the rest of the graph is
revealed using '''P (rule 1), it cannot select any supplementary vertex. On the other hand,
if it selects none, then the next cluster is defined using 'kP (rule 2) so that it is not
possible to select more than k vertices in this cluster.
Finally, in the construction performed in the proof of proposition 1, we replace weight

iw by /iw k . We get:
Proposition 3. Let π be a non trivial hereditary graph property satisfying the k-boundary
condition. Let FWA be an approximation algorithm that computes, for every instance, a
maximal set satisfying π and that satisfies H and '()μH for a given approximation ratio

() () /n f n nρ = and 0μ > . Then an on-line algorithm selecting at each step i, either no
vertex or FWA(iG) cannot guarantee the competitive ratio

n
nfkt

t
t

1
11)()1(

−
+ μ

4. ON-LINE INDEPENDENT SET PROBLEM: AN HARDNESS RESULT

Theorem 1 holds for maximum independent set problem. The lower bound
devised for threshold algorithms also applies to this problem. Roughly speaking, those

 M. Demange, B. Kouakou, E. Soutif / On-Line Computation 25

results show that the only way to improve the competitive ratio of algorithm LWA for
LWIS is to improve the performance guarantee of the off-line algorithm FWA used by
LWA. Nevertheless, this method is limited by the bound (1/) 1()tO n − obtained by using an
optimal algorithm as FWA. So, the following question is raised: is it possible to get a
better competitive ratio by using another type of algorithms? In this section, we bring to
the fore a negative answer to this question. More precisely, we prove:
Theorem 2. Let LWA be an on-line algorithm solving LWIS for 2t ≥ (the graph is
revealed in t clusters). Its competitive ratio cLWA satisfies for every n:

1

() .
tnc n t

n
≤LWA

The result holds even if the weights of clusters are known from the beginning of the on-
line process.
Proof. Let LWA be an on-line algorithm solving LWIS; consider 2≥t and

2 , ≥= kktn .

Set
11 i

t
iw k

−
−

= and consider an on-line instance in t steps such that the whole graph has n

vertices, and iw is the weight of the thi cluster. So, the total weight is
1

1
1

1

t

t

kW k

k

−
=

−

.

We apply algorithm LWA (an arbitrary on-line algorithm) to a graph of order n
and of total weight W. Each cluster contains k vertices. Every weight in the first cluster is
equal to 1. Then, we apply the following strategy:

1. If at step i < t, LWA has not selected any vertex yet, then a clique 1iG + of k
vertices is revealed with all vertices of weight

tik /
1 and not linked to

already revealed vertices.
2. If LWA selects some vertices at step i, then clusters 1 2, ,...,i i tG G G+ + are

independent sets of size k with vertices of respective weight 1
1 1,...,i t
t tk k

−
and

(all) linked to an already selected vertex.
We distinguish two cases.
Case 1: rule 2 has never been used. In this case the algorithm has only selected one

vertex in the last cluster that is a clique; so 1
1(()) t
t

w G

k
−=LWA .

On the other hand 1() () 1G Gβ β≥ = , so

1
(())

()

t
tw G k

Gβ

−

≤
LWA

 (16)

 M. Demange, B. Kouakou, E. Soutif / On-Line Computation 26

Case 2: rule 2 has been applied at step i, i < t. It is clear that only one vertex of weight

t
i

k
1

1
−

 has been selected (in iG) since only cliques have been revealed until the thi step and

all the next vertices are linked to an already selected vertex; it implies:

1
1(()) i
t

w G

k
−=LWA . Moreover, 1() ()i i

t

kG G

k

β β +≥ = and consequently:

1
(()) .

()

t
tw G k

Gβ

−

≤
LWA

In conclusion, relations (16) and (17) imply:

11

() .

tt
tt nc n k

t

−−
⎛ ⎞≤ ≤ ⎜ ⎟
⎝ ⎠

LWA

The resulting values point out that threshold algorithm (with an optimal off-line
algorithm as FWA) leads almost to the best possible result. Once more, it generalizes the
lower bound 1/2(1)n −− already known for t = 2 [5].

5. CONCLUDING REMARKS

This work points out that known results for LHG and LWHG(2) can be
generalized to the weighted case LWHG(t). In approximation theory a usual question
concerns the link between weighted and unweighted versions of a given problem (see for
instance [4,2]). In particular, HG and WHG are equivalently solved by polynomial-time
algorithms in the off-line case ([4,8]). The situation is rather different in an on-line
framework.

Indeed, the comparison between theorem 1 and results of [6] points out a gap
between competitive ratios of LHG(t) and LWHG(t), asymptotically equal to:

.~ 2
11

LWHG tf(n)t

LHG

−

ρ
ρ

More generally, weighted problems induce many questions in an on-line

framework. In this work, we focused on an on-line model with weights revealed on-line
together with vertices. An ordinary question deals with models for which weights and the
instance structure are not connected and do not play the same part. In particular, one
could either draw a model where the sequence of the weights is revealed at the beginning
while the graph is revealed on-line or a model where the graph is known in advance and
weights are on-line.

Naturally, the competitive analysis performed in theorem 1 remains valid in
these particular cases. In what concerns hardness results, let us revisit the proof of
theorem 2 and note that weights are known beforehand. Therefore, this hardness result
also holds for a model with weights outside the on-line process.

 M. Demange, B. Kouakou, E. Soutif / On-Line Computation 27

Let us now consider a dual situation where the graph is fixed and weights are
given on-line. The following proposition shows that the same hardness result holds for
this model:
Proposition 4. Let LWA be an on-line algorithm solving the problem LWIS for 2t ≥ (the
set of weights is completely revealed in t steps); the total weight of each cluster is known
in advance. Then, there exists a graph of order n for which the competitive ratio cLWA
satisfies:

1

() .
tnc n t

n
≤LWA

Proof. We set: knikwkktn i
t

i

i =≥∀=≥=
−

−
,1, ,2 ,

11 .

So the total weight of the final graph is
1

1
1 .

1

t

k

kW k

k

−
=

−

This time, we apply the algorithm LWA to a complete graph of order n and of
weight W. The first cluster contains k weights, each of them equals 1. Then we use the
following strategy.

1. If at step i < t, LWA has not selected any vertex yet, we reveal a set of k

identical weights 1 1 ,i
i
t

w
k

k

+ = in order to form the cluster 1iG + of total weight

1
1

i
t

iw k
−

+ = .
2. If LWA selects vertices at step i then in each of the next clusters,

1 2, ,..., , 1i i tG G G k+ + − vertices are of weight 0 and only one vertex
concentrates the weight of the whole cluster.

The proof is completed by using the same arguments as in theorem 2.
Let us finally point out the main difference between theorems 1 and 2. The

former gives some information not only about general algorithms but also about
polynomial-time while the latter does not allow taking into account any considerations
about complexity. Theorem 2 points out that threshold algorithms parameterized by an
exact off-line algorithm are almost optimal among on-line algorithms. An interesting
question is whether the same result holds for polynomial-time on-line algorithms.
Theorem 1 induces that any improvement dealing with the approximation of WHG would
immediately induce an improvement of the competitive ratio that can be guaranteed in
polynomial-time. What about the converse? In [3], we propose a reduction from WIS to
LWIS(2) allowing us to show that any improvement of LWIS(2)'s competitive ratio
guaranteed by any polynomial-time on-line algorithm would imply an improvement of
WIS's approximation ratio. A consequence is a hardness result for polynomial-time on-
line algorithms. A generalization of this result to LWIS(t) or, more generally, the design
of such reductions from off-line to on-line seems to be a fruitful research area.

 M. Demange, B. Kouakou, E. Soutif / On-Line Computation 28

REFERENCES

[1] Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., and Protasi,
M., Complexity and Approximation (Combinatorial Optimization Problems and Their
Approximability Properties), Springer-Verlag, 1999.

[2] Crescenzi, P., Silvestri, R., and Trevisan, L., “To weight or not to weight: where is the
question ?”, in: Proc. of 4th Israel Symposium on Theory on Computing and Systems, IEEE
Computer Society, 1996, 68-77.

[3] Demange, M., “Reducing off-line to on-line: an example and its applications”, Yugoslav
Journal of Operations Research, 13(1) (2003) 3-24.

[4] Demange, M., and Paschos, V. Th., “Improved approximations for weighted and unweighted
graph problems”, Theory of Computing Systems, 38(6) (2005) 763-787.

[5] Demange, M., and Paschos, Th.V., “Two-steps combinatorial optimization”, in: Proc. of
OLCP'01, 2001, 37-44.

[6] Demange, M., Paradon, X., and Paschos, Th.V., “On-line maximum-order induced hereditary
subgraph problems”, International Transactions in Operational Research, 12 (2) (2005) 185-
201

[7] Garey, M.R., and Johnson, D.S., Computers and Intractability. A Guide to the Theory of NP-
Completness. CA.Freeman, San Francisco, 1979.

[8] Halldórsson, M.M., “Approximations of weighted independent set and hereditary subset
problems”, Journal of Graph Algorithms and Applications, 4 (1) (2000) 1-16.

[9] Halldórsson, M.M., and Radhakrishnan, J., “Improved approximations of independent set in
boundeed-degre graphs via subgraph removal”, Nordic Journal of Computing, 1 (4) (1994)
475-492.

[10] Halldórsson, M.M., and Radhakrishnan, J., “Greed is good: approximation of independent set
in sparse and boundeed-degree graphs”, Algorithmica, 18 (1) (1997) 145-163.

[11] Halldórsson, M.M., “Approximations via partitioning”, JAIST, Japan Advanced, Institute of
Science and Technology, Japan, 1995.

[12] Håstad, J., “Clique is hard to approximate within n1-ε”, Acta Mathematica, 182 (1999) 105-
142.

[13] Paradon, X., “Algorithmique on-line”, Ph.D. Thesis, Université Paris Dauphine, 2000.

