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1. INTRODUCTION 

For the beginning, we give the concepts of the finite state automaton, restricted 
permutations and restricted variations.  

A finite state automaton M  consists of five parts:  
1. a finite set (alphabet) T  of inputs;  
2. a finite set S  of (internal) states;  
3. a subset Y  of S  (whose elements are called final, accepting or “yes” 

states);  
4. an initial state (or start state) 0s  in S ;  
5. a next-state function F from S T×  into S .  

Such an automaton M  is denoted by: 0( , , , , )M T S Y s F= . 
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A state is said to be accessible state if it can be reached from the start state. A 
state s S∈  is called sink state if ( , )f s x s=  for all x T∈ . 

The nondeterministic finite automaton is a variant of finite automaton with the 
following characteristic: 

zero or more than one possible value may exist for state transition (in 
the deterministic finite automaton,  the next possible state is uniquely determined). 

More about finite state automata and machines can be found in [6]. 
Let p be a permutation of the set { }1, 2,...,nN n= .  
A restricted permutation is a permutation p such that the positions of the 

marks after the permutation are restricted. It can be specified by an n n×  zero-one matrix 
( )ijA a= where: 

- 1ija = , if the mark j is permitted to occupy the i-th place; 
- 0ija = , otherwise. 
We can say that 1ija =  if and only if it is allowed to be ( )p i j= . 
We introduce a technique based on finite state automata for counting the number 

of strongly restricted permutations of nN  satisfying the condition ( )p i i I− ∈  (for some 
set I ), and another type of Lehmer's strongly restricted permutations when in a circle, 
each mark moves clockwise only but not more than k places (for the history of this kind 
of a problems see [1]). 

More about restricted permutations can be found in [1], [3] and [7]. 
An n-variation of the set { }1, 2,...,n sN n s+ = +  is any 1-to-1 mapping p from 

the set nN  into n sN + . The restricted n-variation can be specified by an ( )n n s× +  zero-
one matrix ( )ijA a=  in which: 

1ijA =  if and only if it is allowed to be ( )p i j= . 
 

2. MAIN RESULTS 

For each type of restricted permutations, we construct a finite state automaton 
able to recognize and enumerate them. At the beginning, we consider restricted 
permutations satisfying the condition ( )k p i i r− ≤ − ≤  (for arbitrary natural numbers k 
and r).  Suppose that we are in the process of constructing a restricted permutation and 
that the partially built permutation is 

1 2 1
.

(1) (2) ( 1)
h

p p p h
−⎛ ⎞

⎜ ⎟−⎝ ⎠

K

K
 

We have to select a value for ( )p h . 
First, we can notice that choosing the h-th element of the permutation, ( )p h , depends 
only on the status of the element h, preceding k elements and the following r elements of 
the permutation under construction (status can be used or unused).  
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The states consist of 1k r+ +  slots corresponding to the preceding k elements 
( , 1,..., 1)h k h k h− − + − , momentary element h and the following r elements of the 
permutation under construction ( 1, 2,..., )h h h r+ + + . Some have already been filled (if 
corresponding element is used), and we need to fill one more, and then to drop the first 
slot off to give a new state (we will denote filled slots by 1 and vacant by 0). However, if 
the first slot is vacant, that is the one we need to fill now, because it is our last chance. 
There are lot of inaccessible states (more precisely accessible states have exactly k ones), 
so we can drop them away. 

This approach has some similarities with the method by D. Blackwell described 
in [5] or [7], but the main difference is that Blackwell’s method gives asymptotic 
behavior of the number of certain restricted permutations (the growth of that number is as 
the n-th power of the largest eigenvalue) and we give the exact number of restricted 
permutations. Also, he solved one particular case and we solved the problem in general. 

We illustrate this with the following example. 
 

Example 1. Let us consider restricted permutations satisfying the condition 
3 ( ) 4p i i− ≤ − ≤  (i.e. k=3 and r=4).  Suppose that the partially built permutation is 

1 2 3 4
.

4 1 7 3
⎛ ⎞
⎜ ⎟
⎝ ⎠

K

K
 

We have to select the fifth value, i.e. the momentary element h=5 or we can say 
that we are finding p(5). 

Now, the situation with the elements from 2 to 9 ( 5 3 2h k− = − =  and 
5 4 9h r+ = + = )  has to be described.   

We use numbers 4, 7 and 3 (at their positions we put 1), and the others are 
unused (there are 0): 

0 1 1 0 0 1 0 0
2 3 4 5 6 7 8 9

 

The state corresponding to this situation is 01100100. The first slot 
(corresponding to the number 2) is empty, and this is the last chance to fill it. So, (5)p  
must be equal to 2. Since (5) 5 2 5 3p − = − = − , we are going 3 elements to the left (our 
automaton can make this movement only if it comes to letter -3 from the alphabet 

{ }3, 2, 1,0,1, 2,3,4T = − − − ) . 
After that, the new partially built permutation is  

1 2 3 4 5
.

4 1 7 3 2
⎛ ⎞
⎜ ⎟
⎝ ⎠

K

K
 

We have to select the sixth value, i.e. the momentary element 6h = . 
We have to describe the situation with the elements from 3 to 10 

( 6 3 3h k− = − =  and 6 4 10h r+ = + = ) .  
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The used numbers are 4, 7 and 3 (at their positions we put 1), and the others are 
unused (there are 0): 

1 1 0 0 1 0 0 0
3 4 5 6 7 8 9 10

 

The state corresponding to this situation is 11001000. The first slot 
(corresponding to the number 3) is not empty, so (6)p  can take any unused element: 5, 
6, 8, 9 or 10 (corresponding letters are -1, 0, 2, 3 or 4).               ■ 

 
Theorem 1. The set of the internal states S consists of the states that have exactly k ones 
and one more sink state, denoted by Q, corresponding to impossible state for this kind of 
the restricted permutations. 
The alphabet T is given by:  

{ }, 1,..., 2, 1,0,1, 2,..., 1,T k k r r= − − + − − − . 

In this case, there is only one “yes” state – when first k slots are filled (in this 
case, we used all numbers less than h, so they made one permutation). In the second 
example, we will have more than one “yes” state. 

The start state is the same as the only one “yes” state. 
The next-state function ( )for k x r− ≤ ≤  is defined by: 
- 1( , )F S x Q=  if the first slot is vacant and x k≠ − ; 
- 1( , )F S x Q=  if the ( 1 )k x th+ + −  slot is filled; 
- 1 2( , )F S x S=  if the first slot is filled and ( 1 )k x th+ + −  slot is vacant.  
The state 2S  is obtained from the state 1S  when ( 1 )k x th+ + − slot is filled, then 

we drop the first slot off and put one empty slot at the end. 
The finite state automaton 0( , , , , )M T S Y s F=  recognizes only the restricted 

permutations satisfying the condition ( )k p i i r− ≤ − ≤ . 
Proof of the Theorem 1: Filled and empty slots in each state are shifting to the left with 
the next-state function ( )1 2,F S x S= . It provides that each number in the permutation 
occurs no more than ones.  

Only one “yes” state – when the first k slots are filled, provide that all numbers 
smaller than a momentary element are used, so they made one permutation. 

Restraint k x r− ≤ ≤  for the alphabet T leads to the fact that permutations 
satisfy condition ( )k p i i r− ≤ − ≤ .                 □ 

 
In the next theorem, we are going further by giving generalizations of the 

restricted permutations defined by the previous theorem. We will consider restricted 
permutations satisfying the condition ( )p i i I− ∈  for all ni N∈  , where I  is some finite 
subset of the set { }, 1,..., 2, 1,0,1,2,..., 1,k k r r− − + − − − . Than, we will construct the 
corresponding automaton M. We will omit the proof of the Theorem 2, as it is essentially 
the same as the proof of the Theorem 1. 
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Theorem 2. The set of the internal states S, only one “yes” state, the start state and the 
next-state function F  (for x I∈ ) are the same as in the Theorem 1. 

The alphabet T  is different: T I= . 
The finite state automaton 0( , , , , )M T S Y s F=  recognizes only restricted 

permutations satisfying the condition ( )p i i I− ∈ .                     □ 
 
In [2], Baltić gave some of the applications of the finite state automata in the 

enumeration of the restricted permutations, and here we are going further. We will use 
the finite state automata for the enumeration of the restricted n-variations of the set 

{ }1,2,...,n sN n s+ = +  satisfying the condition ( )p i i I− ∈ . The case of restricted 
variations differs only in the “yes” states. There can be more than one “yes” state. 

 
Theorem 3. The alphabet T, the set of the internal states S, the start state and the next-
state function F  (for x I∈ )  are the same as in the Theorem 2. 

The “yes” states are all those states with exactly k slots filled where all slots 
from (k+s+1)-th to (k+r+1)-th are vacant. 

The finite state automaton 0( , , , , )M T S Y s F=  recognizes only restricted          
n-variations of the set { }1,2,...,n sN n s+ = +  satisfying the condition ( )p i i I− ∈ .  
Proof of the Theorem 3: All the states where slots from ( 1)k s+ + -th to ( 1)k s+ + -th 
are vacant generate an n-variation of the set { }1, 2,...,n sN n s+ = + . 
Other parts of the proof of Theorem 3 are the same as used in proof of Theorem 1, so we 
omit them.                         □ 
 
 

3. THE FIRST EXAMPLE  

We will consider restricted permutations satisfying the condition 
{ }( ) 2,0,2p i i− ∈ −  for all ni N∈ , and construct the corresponding automaton M. 

It is a special case of permutation described in the previous section, but with 
more restrictions. Everything is the same but the alphabet differs: { }2,0,2T = − . 

Internal states are { }, , , , , ,S a b c d e f Q= . The following table shows the correspondence 
between the internal states and the filled and vacant slots: 
 
Table 1: The internal states 

States a b c d e f Q 
Slots 11000 10100 10010 01100 01010 00110  

 
The initial state and the only one “yes” state is a. 
For example, if the state of automaton is c it is corresponding to slots 10010. 

Input -2 may be viewed as causing a change in the state of the automaton from c to Q, 
because the first slot is filled. Input 0 cause change from c to d: from the state c=10010, 
we get 10110 when we fill momentary element (that’s 1 on the third slot), and after 
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dropping the first slot off and putting one empty slot at the end, we finally get 
01100d = ). Input 2 cause change from c to f (from the state c = 10010, we get 10011 and 

after that  f = 00110). From the state f = 00110, we need to fill 0 at the first slot, so 
( , 2)F f d− =  and ( ,0)F f Q=  and ( , 2)F f Q= . 

The next-state function ( , )F S x=  is presented by Table 2: 
 

Table 2: The next-state function ( , )F S x=  
 States   S 

Inputs   x a b c d e f Q 
-2 Q Q Q a b d Q 

0 a Q d Q Q Q Q 

2 c e f Q Q Q Q 

 
The automaton M  can be shown using its state diagram, shown in Figure 1. 
There are inaccessible states b and e, so we can omit them. Also, for more 

clarity, we can omit edges leading to sink state Q and the state Q – leading to a new 
automaton 2M . In a fact, 2M  is nondeterministic automaton (there is zero possible value 
for some state transition; if we look at their graphs – the graph of M2 is the subgraph of 
the graph of M ). It is presented in Figure 2. 

 

 

Figure 1: The automaton M   

The state diagram of the automaton 2M  represented in Figure 2 is an oriented 
graph. In the terms of Graph Theory, the construction of the restricted permutation 
corresponds to forming the closed walk of length n  from vertex a  to vertex a .  

Let us denote the number of the walks of length n  from vertex v  to vertex a  
with ( )v n . Without loss of generality, we can take (0) 1a = and 

(0) (0) (0) (0) (0) 0b c d e f= = = = = . 
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Figure 2: Nondeterministic automaton 2M   

The number of the restricted permutations of the set nN  satisfying 

{ }( ) 2,0,2p i i− ∈ −  is equal to ( )a n . Notice that each of the closed walks consists of 
walks a a− , a c d a− − −  or a c f d a− − − − . This conclusion leads us to the bijection 
between the restricted permutations satisfying the condition { }( ) 2,0,2p i i− ∈ −  for all 

ni N∈  and compositions of the number n  into elements from the set { }1,3,4 .  
For example, (5) 6a = , we have 6 permutations: 

      12345,         12543,     14325,   14523,   32145,   34125  

and the corresponding 6 compositions: 

1 1 1 1 1,+ + + +   1 1 3, + +   1 3 1, + +   1 4, +   3 1 1, + +   4 1+ . 

 
From the state diagrams of automata M  and 2M , we can get a system of the 

recurrence equations (we discuss 2M  because it leads to a more simple system, with less 
number of equations). Notice, ones more, that the number of the restricted permutations 
of the set nN  is equal to the number of the closed walks of length n  from vertex a  to 
vertex a . The next-state function ( , )F S x=  given in Table 2 translates directly into the 
system of recurrences.  

If the first element of permutation is equal to 1, it corresponds to input 0 in 
automaton M , that causes no change of automaton’s state. If the first element of 
permutation is equal to 3, it corresponds to input 2 in automaton M , that causes change 
from a  to c . This observation leads us to conclusion that number of the closed walks of 
length n  from vertex a  to vertex a  is equal to the sum of the number of the closed 
walks of length 1n −  from vertex a  to vertex a  and the number of the closed path of 
length 1n −  from vertex c  to vertex a , i.e. 

( 1) ( ) ( )a n a n c n+ = + . 
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Similarly, we come to the following system of recurrence equations: 

( 1) ( ) ( )a n a n c n+ = +  (1) 

( 1) ( ) ( )c n d n f n+ = +  (2) 

( 1) ( )d n a n+ =  (3) 

( 1) ( )f n d n+ =  (4) 

with the initial conditions  

(0) 1a = , (0) 0c = , (0) 0d =  and (0) 0f = . 

From the equation (3), we find ( ) ( 1)d n a n= − . Putting that into the equation (4) 
gives ( ) ( 2)f n a n= − . Then, from the equation (2), we find ( ) ( 2) ( 3)c n a n a n= − + − . 
That leads us to homogeneous linear recurrence equation with constant coefficients:   

( 1) ( ) ( 2) ( 3)a n a n a n a n+ = + − + − , 

with initial conditions (0) 1a = , (1) 1a = , (2) 1a = , (3) 2a = . 

The auxiliary equation is 4 3 1t t t= + + . It can be transformed into the form: 
2 2( 1)( 1) 0t t t+ − − =  and its solutions are: 

1 2 3
1 5, ,

2
t i t i t +
= = − =  and 4

1 5
2

t −
= . 

So, 1 1 2 2 3 3 4 4( ) n n n na n C t C t C t C t= + + + . Using the initial conditions, we find: 

 
1

2
10

iC −
= , 

2

2
10

iC +
= , 

3

3 5
10

C +
= , 

4

3 5
10

C −
= .  

Since  

2 2 2 2 2 1( ) (cos sin ) (cos sin ) cos sin
10 10 10 2 2 10 2 2 5 2 5 2

n ni i i n n i n n n ni i i iπ π π π π π− + − +
⋅ + ⋅ − = ⋅ + + ⋅ − = ⋅ + ⋅  

and  
2 2

3 5 1 5 3 5 1 5 1 1 5 1 5 1 ( 2)
10 2 10 2 5 2 2 5

n n n n

L n
+ +⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + − − + −⎜ ⎟⋅ + ⋅ = + = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 

(where ( )L n  denotes n-th element of Lucas sequence given with 
( 1) ( ) ( 1),L n L n L n+ = + − (1) 1,L = (2) 3L = ) , we have: 

⎟
⎠
⎞

⎜
⎝
⎛ +⋅++=

2
sin

2
cos2)2(

5
1)( ππ nnnLna . 

There is also one more combinatorial interpretation of such restricted 
permutations. Any permutation is a product (composition) of an identical permutation ε  
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and some transpositions. Transposition ijτ  is a permutation of two elements i  and j  – it 
is an exchange of two elements ( i  and j ) of an ordered list with all other elements 
staying the same. The restricted permutations satisfying the condition { }( ) 2,0, 2p i i− ∈ −  
for all ni N∈  are products of transpositions with no common element, i.e. in ij klτ τo  all 
four elements i , j , k , l  are distinct. This leads us to bijection between the restricted 
permutations satisfying the condition { }( ) 2,0, 2p i i− ∈ −  for all ni N∈  and the number 
of all subsets of the set 2nN − , which do not contain two elements whose difference is 
equal to 2. More about these properties of the restricted permutations can be found in [1], 
[2] and [3]. 

 
For example, (5) 6a = , and we have 6 permutations: 

12345 ,     12543 ,     14325 ,     14523 ,     32145 ,     34125 . 

They can be represented as: 

   ε ,             35τ ,          24τ ,        24 35τ τo ,       13τ ,        13 24τ τo . 

Corresponding subsets of the set { }3 1, 2,3N =  are: 
   ∅ ,            {3},         {2} ,        {2,3} ,        {1} ,         {1,2} . 
 
This property holds in general:  
The number of all subsets of set n kN −  which do not contain two elements whose 

difference is k is equal to the number of the restricted permutations of nN  satisfying the 
condition { }( ) ,0,p i i k k− ∈ −  for all ni N∈ . 

 
Gerald E. Bergum and Verner E. Hoggat enumerated the subsets which do not 

contain two elements whose difference is 2 (see [4]), but we are the first who gives 
connections with other combinatorial structures. 

 
 

4. THE SECOND EXAMPLE 

Now we will generalize Theorem 1 for the circular case - which is surely an 
interesting one. Similarly, we may ask for the number of the permutations of the set Nn 
such that ( ) 0,1,..., (mod )p i i k n− ≡ . This has the effect of allowing { }( ) 1,2,...,p n k∈ , 

{ }( 1) 1,2,..., 1p n k− ∈ − , and so on, ( 1) 1p n k− + = . 
We need some auxiliary slots to correspond to the vacant positions from among 

the first k – which could be filled by late elements, and to accept all these needed to be 
filled. These slots will be presented red with underline formatting. 

We will consider restricted permutations satisfying the condition 
( ) 0,1,2 (mod )p i i n− ≡  for all ni N∈ . This problem is well known. You can find the 

solution based on the Transfer-matrix method in Example 4.7.7 in [8], but we will use 
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different approach: we construct the corresponding automaton M  and there from, we 
find the system of the recurrence equations, which leads to the solution. 

The alphabet in this case also differs:  T = {I,II,0,1,2}. The inputs I and II denote 
filling vacant slots at the end of permutation ( I corresponds to ( ) 1p i = , where i n=  or 

1i n= − , and II corresponds to ( ) 2p i = , where i n= ).  
Internal states are { } , , , , , , , , , , , , ,S a b c d e f g h i j k l m Q= .  
The following table shows the correspondence between the internal states and 

the filled and vacant slots: 
 

Table 3: The internal states 
States a b c d e f g 
Slots 00000 10000 01100 00010 11000 10100 10010 

States h i j k 1 l 1 m 0 Q 
Slots 01100 01010 00110 11000 10100 11000  

 
The states e, k and m have the same positions of filled and vacant slots. That 

states differs because of the following reason. If we have input II, the permutation under 
construction should end in that step. If we have input I, the permutation under 
construction should end in that step or in the next one. The same situation is with states f 
and l. The states a, b, c and d denote the beginning states (corresponding to first step of 
construction permutation). All other states have exactly two slots filled. 

The initial state is a.  
The set of  the “yes” states is { }Y  , , , ,a b e k m= . It consists of states that have 0, 

1 or 2 filled slots (we took a as the “yes” state because it is common to say that there is 1 
permutation of length 0; fact that b is a “yes” state corresponds to permutation 1). 

The next-state function ( , )F S x=  is given by Table 4: 
 

Table 4: The next-state function ( , )F S x=  
 Inputs   x 

States   S I II 0 1 2 
a Q Q b c d 
b Q Q e f g 
c k Q Q h i 
d l Q h Q j 
e Q Q e Q Q 
f Q m Q f g 
g Q Q f Q Q 
h k Q Q h i 
i Q Q h Q Q 
j l Q Q Q j 
k Q Q m Q Q 
l Q m Q Q Q 
m Q Q Q Q Q 
Q Q Q Q Q Q 
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Table 4 translates directly into the system of recurrences: 

( 1) ( ) ( ) ( )a n b n c n d n+ = + +  

( 1) ( ) ( ) ( )b n e n f n g n+ = + +  

( 1) ( ) ( ) ( )c n k n h n i n+ = + +  

( 1) ( ) ( ) ( )d n l n h n j n+ = + +  

( 1) ( )e n e n+ =  

( 1) ( ) ( ) ( )f n m n f n g n+ = + +  

( 1) ( )g n f n+ =  

( 1) ( ) ( ) ( )h n k n h n i n+ = + +  

( 1) ( )i n h n+ =  

( 1) ( ) ( )j n l n j n+ = +  

( 1) ( )k n m n+ =  

( 1) ( )l n m n+ =  

⎩
⎨
⎧

>
=

=
00
01

)(
n
n

nm  

with initial conditions:  

(0) (0) (0) (0) (0) 1a b e k m= = = = =  and  

(0) (0) (0) (0) (0) (0) (0) (0) 0c d f g h i j l= = = = = = = = . 

It is easy to show that for n ≥ 2, we have:  

( ) ( ) ( ) 0, ( ) ( ) 1, ( ) ( ) ( ),
( ) ( 1), ( ) ( ) ( 1), ( ) ( ) ( ) 1

k n l n m n e n j n f n i n F n
g n F n c n h n F n b n d n F n

= = = = = = =
= − = = − = = +

 

( ( )F n  denotes n-th element of Fibonacci sequence given with 
( 1) ( ) ( 1), (1) 1, (2) 1)F n F n F n F F+ = + − = = , there from, we have: 

( ) 2 ( 1) ( 1)a n F n F n= + − + +  for n ≥ 3. 

From the well known fact about Fibonacci and Lucas numbers, we have:  

( 1) ( 1) ( )F n F n L n− + + = , 

where L(n) denotes n-th element of Lucas sequence. 
This conclusion leads us to: 
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1, 0,1
( ) 2, 2

2 ( ), 3

n
a n n

L n n

=⎧
⎪= =⎨
⎪ + ≥⎩

 

Similarly, but with much more hard calculations, we can solve the same 
problem for  k = 3. Solution in this case is given by: 

( ) 2 6 ( ) 8 ( 1) 2 ( 2)a n T n T n T n= + + − + − ,   for 3n ≥ . 

(T(n) denotes n-th element of Tribonacci sequence given with 
( 1) ( ) ( 1) ( 2), (0) 0, (1) 1, (2) 1)T n T n T n T n T T T+ = + − + − = = = . 

 
 

5. THE THIRD EXAMPLE  

We will consider restricted variations satisfying the condition { }( ) 1,2p i i− ∈ −  
for all ni N∈  and with 2s =  (n-variations of the set 2nN + ). We will construct the 
corresponding automaton M . 

Now, the alphabet is { }1, 2T = − . 

Internal states are { }, , , , , , ,S a b c d e f g Q= . 
The initial state is a . All states except Q are “yes” states. 
The following table shows the correspondence between the internal states and 

the filled and vacant slots. Also, the next-state function ( , )F S x=  is given by Table 5: 
 

Table 5: The internal states and the next-state function ( , )F S x=  
 States   S 

Slots 1000 0100 0010 1010 1100 0110 1110  
Inputs   x a b c d e f g Q 

-1 Q a b Q Q e Q Q 

2 c d f f d g g Q 

 
The nondeterministic automaton M  can be presented by its state diagram as in Figure 3. 

 

 

Figure 3: The automaton M   
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The next-state function ( , )F S x=  given by the Table 5 (or from the state 
diagram of automaton M  which appears in the Figure 3) translates directly into the 
system of recurrences: 

( 1) ( )a n c n+ =  

( 1) ( ) ( )b n a n d n+ = +  

( 1) ( ) ( )c n b n f n+ = +  

( 1) ( )d n f n+ =  

( 1) ( )e n d n+ =  

( 1) ( ) ( )f n e n g n+ = +  

( 1) ( )g n g n+ =  

with initial conditions  

(0) 1, (0) 1, (0) 1, (0) 1, (0) 1, (0) 1a b c d e f= = = = = =  and (0) 1g = . 

It is easy to show that we have recurrence equation:  

( 3) ( ) 1,f n f n+ = +  with initial conditions (0) 1, (1) 2, (2) 2f f f= = = . 

Solving  this recurrence, we find  

5( )
3

nf n +⎡ ⎤= ⎢ ⎥⎣ ⎦
 

(where [x] denotes the greatest integer less than or equal to a number x). 
This conclusion with recurrence ( 3) ( ) ( 1) ( 1)a n a n f n f n+ = + + + −   

(obtained from recurrences ( 2) ( ) ( )a n b n f n+ = +  and ( 2) ( 1) ( )b n a n f n+ = + + ) leads 
us to: 

2

2

, 3 3
( ) , 3 2

( 1), 3 1

k n k
a n k n k

k k n k

= −⎧
⎪= = −⎨
⎪ ⋅ + = −⎩

 

This is a shifted sequence A008133 at [9]. 
 
 

6. FOURTH EXAMPLE  

We will consider restricted variations satisfying the condition 
{ }( ) 2,0,2p i i− ∈ −  for all ni N∈  and with 1s =  ( n -variations of the set 1nN + ). We 

construct the corresponding automaton M . 
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Now, the alphabet is { }2,0,2T = − . 

Internal states are { }, , , , , , , , ,S a b c d e f g h i Q= . 
The initial state is a. States a, c and g are “yes” states. 
The following table shows the correspondence between the internal states and 

the filled and vacant slots. Also, the next-state function ( , )F S x=  is given by Table 6: 
 

Table 6: The internal states and the next-state function ( , )F S x=  
 States   S 

Slots 11000 10010 01100 00110 11010 01110 11100 10110 11110  
Inputs   x a b c d e f g h i Q 

-2 Q Q a c Q g Q Q Q Q 

0 a c Q Q g Q Q Q Q Q 
2 b d e f h i e f i Q 

 

The nondeterministic automaton M  can be presented by its state diagram as in 
Figure 4. 
 

 

Figure 4: The automaton M  

There is sink state i , so we can omit it (also the corresponding recurrence).  
The next-state function ( , )F S x=  given by the Table 6 translates directly into 

the system of recurrences: 

( 1) ( ) ( )a n a n b n+ = +  

( 1) ( ) ( )b n c n d n+ = +  

( 1) ( ) ( )c n a n e n+ = +  

( 1) ( ) ( )d n c n f n+ = +  

( 1) ( ) ( )e n g n h n+ = +  

( 1) ( )f n g n+ =  
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( 1) ( )g n e n+ =  

( 1) ( )h n f n+ =  

with initial conditions  

(0) 1, (0) 0, (0) 1, (0) 0, (0) 0, (0) 0, (0) 1a b c d e f g= = = = = = = and (0) 0h = . 

For a sequence which is denoted by a lower case letter, we will denote the 
corresponding generating function by the same upper case letter ( ( ) ( )a n A z→ , 

( ) ( )b n B z→ , and so on). We find the following system: 

( ) 1 ( ) ( )A z A z B z
z
−

= +  

( ) ( ) ( )B z C z D z
z

= +  

( ) 1 ( ) ( )C z A z E z
z
−

= +  

( ) ( ) ( )D z C z F z
z

= +  

( ) ( ) ( )E z G z H z
z

= +  

( ) ( )F z G z
z

=  

( ) 1 ( )G z E z
z
−

=  

( ) ( )H z F z
z

=  

This is the system of linear equations (variables are A(z),B(z),…,F(z) ) and part 
of its solution that we are interested in is: 

3

2 4 5 6 7 8

1+z( )
1-z-z -2z +2z +z +z +z

A z =  

From the denominator of this generating function 2 4 5 6 7 81- - -2 +2 + + +z z z z z z z , we 
can find the linear recurrence equation  

( 8) ( 7) ( 6) 2 ( 4) 2 ( 3) ( 2) ( 1) ( ) 0a n a n a n a n a n a n a n a n+ − + − + − + + + + + + + + = , i.e. 

( 8) ( 7) ( 6) 2 ( 4) 2 ( 3) ( 2) ( 1) ( )a n a n a n a n a n a n a n a n+ = + + + + + − + − + − + − . 
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The number of n-variations of the set 1 , ( )nN a n+  satisfying the condition 

{ }( ) 2,0,2p i i− ∈ −  for all ni N∈  is determined by its generating function A(z): 
 

Table 7: The number of n-variations of the set 1nN + , ( )a n , satisfying { }( ) 2,0,2p i i− ∈ −  
n 0 1 2 3 4 5 6 7 8 9 10 … 

a(n) 1 1 2 4 8 12 21 35 60 96 160 … 
 
This is the sequence A217694 at [9]. 

 
 

7. CONCLUSION 

The finite state automata are powerful tool for generating some combinatorial 
structures. Tracing the generation, it  leads us to the system of recurrence equations. The 
usage of finite state automata encompasses the other known techniques for counting 
restricted permutations, i.e. as expanding permanents (in the sense of the computational 
complexity), Stanley Transfer-matrix method [7] and Baltić’s technique from [1] (it has 
less equations in the system of the recurrence equations then Stanley Transfer-matrix 
method and can easily manage with the circular case, or with some additional cases such 
as parity of the permutation). By this approach, we have solved several hard 
combinatorial problems. 
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