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1. INTRODUCTION 

The following minimization problem is considered: 

min ( )
nx R

f x
∈

 (1.1) 
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where { }: nf R R→ ∪ +∞  is a convex and not necessarily differentiable function with a 

nonempty set *X  of minima. 
Many approaches have been presented for non-smooth programs, but they are 

often restricted to the convex unconstrained case. The reason for the restriction is the fact 
that a constrained problem can be easily transformed to an unconstrained problem using a 
distance function. In general, the various approaches are based on combinations of the 
following methods: subgradient methods, bundle techniques and the Moreau-Yosida 
regularization.  

For a convex function f  it is very important that its Moreau-Yosida 
regularization is a new function with the same set of minima as f and is differentiable 
with Lipschitz continuous gradient, even when f  is not differentiable. In [13], [14] and 
[23] the second order properties of the Moreau-Yosida regularization of a given function 
f are considered.  

Having in mind that the Moreau-Yosida regularization of a proper closed 
convex function is an 1LC  function, we present an optimization algorithm (using the 
second order Dini upper directional derivative (described in [1])) based on the results 
from [3], which is the main idea of this paper. 

We shall present an iterative algorithm for finding an optimal solution of 
problem (1.1) by generating the sequence of points { }kx  of the following form: 

2
1 0,1,..., 0, 0k k k k k k k kx x s d k s dα α+ = + + = ≠ ≠  (1.2) 

where the step-size kα  and the directional vectors ks  and kd  are defined by the 
particular algorithms. 

The paper is organized as follows: in the second section, some basic theoretical 
preliminaries are given; in the third section, the Moreau-Yosida regularization and its 
properties are described; in the fourth section, the definition of the second order Dini 
upper directional derivative and its basic properties are given; in the fifth section, the 
semi-smooth functions and conditions for their minimization are described. Finally, in 
the sixth section, a model algorithm is suggested, its convergence is proved and an 
estimate rate of its convergence is given, too.  

 

2. THEORETICAL PRELIMINARIES  

Throughout the paper we will use the following notation. A vector s  refers to a 
column vector, and ∇ denotes the gradient operator 

1 2

, ,...,
T

nx x x
⎛ ⎞∂ ∂ ∂
⎜ ⎟∂ ∂ ∂⎝ ⎠

. The Euclidean 

product is denoted by ,⋅ ⋅  and ⋅  is the associated norm; ( ),B x ρ  is the ball centred at 
x with radius ρ . For a given symmetric positive definite linear operator M , we set 

⋅⋅=⋅⋅ ,:, MM
; hence, it is shortly denoted by 2 : ,

M M
x x x= .The smallest and the largest 

eigenvalue of M we denote by λ  and Λ , respectively. 
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The domain of a given function { }: nf R R→ ∪ +∞  is the set 

( ) ( ){ }ndom f x R f x= ∈ < +∞ . We say that f  is proper if its domain is nonempty.  

The point * ( )
nx R

x arg min f x
∈

=  refers to the minimum point of a given function 

{ }: nf R R→ ∪ +∞ . 
The epigraph of a given function { }: nf R R→ ∪ +∞  is the set 

{ }( , ) ( )nepi f x R R f xα α= ∈ × ≥ . The concept of the epigraph enables us to define 

convexity and closure of a function in a new way. We say that f  is convex if its 
epigraph is a convex set, and f  is closed if its epigraph is a closed set. 

In this section, we will give definitions and statements that are necessary for this 
work. 
Definition 1. A vector ng R∈  is said to be a subgradient of a given proper convex 

function { }: nf R R→ ∪ +∞  at a point nRx∈  if the next inequality 

( ) ( ) ( )Tf z f x g z x≥ + ⋅ −  (2.1) 

holds for all nz R∈ . The set of all subgradients of ( )f x  at the point x , called the 

subdifferential at the point x , is denoted by ( )f x∂ . The subdifferential ( )f x∂  is a 

nonempty set if and only if ( )x dom f∈ . 

For a convex function f  it follows that { }( ) ( ) ( )
n

T

z R
f x max f z g x z

∈
= + −  holds, 

where ( )g f z∈∂  (see [7]). 
The concept of the subgradient is a simple generalization of the gradient for 

non-differentiable convex functions. 
Lemma 1. Let { }:f S R→ ∪ +∞  be a convex function defined on a convex set nS R⊆ , 

and intx S′∈ . Let { }kx  be a sequence such that kx x′→ , where 
2

1 , 0,1,..., 0, 0k k k k k k k kx x s d k s dε ε+ = + + = ≠ ≠ , 0 , 0k kε ε> →  and ks s→ , 

kd d→ and ( )k kg f x∈∂ . Then all accumulation points of the sequence{ }kg  lie in the 
set ( )f x′∂ . 
Proof. Since ( )k kg f x∈∂ , then the inequality ( ) ( ) ( )T

k k kf y f x g y x≥ + ⋅ −  holds for any 
y S∈ . Hence, taking any subsequence for which kg g ′→ , it follows that 

( ) ( ) ( )Tf y f x g y x′ ′ ′≥ + ⋅ − , which means that ( )g f x′ ′∈∂ .                                             ■ 
Definition 2. The directional derivative of a real function f defined on nR  at the point 

nx R′∈  in the direction ns R∈ , denoted by ( , )f x s′ ′ , is 

( ) ( )( , )
t 0

f x t s f xf x s lim
t↓

′ ′+ ⋅ −′ ′ =  (2.2) 



 N. Djuranovic-Milicic, M. Gardasevic - Filipovic / On an Algorithm In Nondifferential  62 

when this limit exists. 

Hence, it follows that if the function f  is convex and x dom f′∈ , then  

( ) ( ) ( , ) ( )f x t s f x t f x s o t′ ′ ′ ′+ ⋅ = + ⋅ +  (2.3) 

holds, which can be considered as one linearization of the function f  (see in [8]). 

Lemma 2. Let { }:f S R→ ∪ +∞  be a convex function defined on a convex set nS R⊆ , 
and intx S′∈ . If the sequence kx x′→ , where k k kx x sε′= + , 0 ,kε >  0kε →  and 

ks s→  then the next formula: 

( )

( ) ( )( , ) Tk

k g f x
k

f x f xf x s lim max s g
ε ′→∞ ∈∂

′−′ ′ = =  (2.4) 

holds. 

Proof. See in [9] or [17]. 
Lemma 3. Let { }:f S R→ ∪ +∞  be a convex function defined on a convex set nS R⊆ . 
Then ( )f x∂  is bounded for x B int S∀ ∈ ⊂ , where B is a compact. 
Proof. See in [10] or [12]. 
Proposition 1 Let { }: nf R R→ ∪ +∞  be a proper convex function. The condition:  

0 ( )f x∈∂  (2.5) 

is a first order necessary and sufficient condition for a global minimizer at nx R∈ . This 
can be stated alternatively as: 

, 1ns R s∀ ∈ =
( )

0T

g f x
max s g
∈∂

≥ . (2.6) 

Proof. See [16]. 
Lemma 4. If a proper convex function { }: nf R R→ ∪ +∞  is a differentiable function at 
a point ( )x dom f∈ , then:  

{ }( ) ( )f x f x∂ = ∇ . (2.7) 

Proof. The statement follows directly from Definition 2. 
Lemma 5. Let { }: n

if R R→ ∪ +∞  for { }1,2,..., ,i n n N= ∈  be convex functions, and 

{ }1,2,...,
( ) ( )ii n

f x max f x
∈

= . Then the function f  is a convex function, and its subgradient g  at 

the point nRx∈  is given as follows: 

   i
Ii

i gg ∑
∈

=
ˆ
λ                                                                                               (2.8) 
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where 1
ˆ

=∑
∈Ii

iλ  and  0≥iλ , ( )xfg ii ∂∈  for Ii ˆ∈ , and Î  is the set 

( ) ( ){ }xfxfIiI i=∈=ˆ . 

Proof. See in [7]. 
Definition 3. The real function f  defined on nR  is 1LC  function on the open set 

nD R⊆  if it is continuously differentiable and its gradient f∇ is locally Lipschitz, i.e. 

( ) ( )f x f y L x y∇ −∇ ≤ −  for ,x y D∈  (2.9) 

for some 0L > . 

 

3. THE MOREAU-YOSIDA REGULARIZATION 

Definition 4. Let { }: nf R R→ ∪ +∞  be a proper closed convex function. The Moreau-
Yosida regularization of a given function f , associated to the metric defined by M, 
denoted by F, is defined as follows: 

21( ) : ( )
2n My R

F x min f y y x
∈

⎧ ⎫= + −⎨ ⎬
⎩ ⎭

 (3.1) 

The above function is an infimal convolution. In [18] it is proved that the infimal 
convolution of a convex function is also a convex function. Hence, the function defined 
by (3.1) is a convex function and has the same set of minima as the function f (see in 
[8]), so the motivation of the study of Moreau-Yosida regularization is due to the fact that 

( )
nx R

min f x
∈

 is equal to ( )
nx R

min F x
∈

. 

Definition 5. The minimum point ( )p x  of the function (3.1): 

21( ) : ( )
2n M

y R
p x argmin f y y x

∈

⎧ ⎫= + −⎨ ⎬
⎩ ⎭

 (3.2) 

is called the proximal point of x .  

Proposition 2. The function F defined by (3.1) is always differentiable. 
Proof. See in [8]. 

The first order regularity of F is well known (see in [8] and [13]): without any 
further assumptions, F has a Lipschitzian gradient on the whole space nR . More 
precisely, for all nRxx ∈21,  the next formula: 

2
1 2 1 2 1 2( ) ( ) ( ) ( ),F x F x F x F x x x∇ −∇ ≤ Λ ∇ −∇ −  (3.3) 

holds (see in [13]), where ( )F x∇ has the following form: 
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: ( ) ( ( )) ( ( ))G F x M x p x f p x= ∇ = − ∈∂  (3.4) 

and ( )p x  is the unique minimum in (3.1). So, according to the above consideration and 

Definition 3, we conclude that F is an 1LC  function (see in [14]). 

Note that the function f  has nonempty subdifferential at any point p  of the 
form ( )p x . Since ( )p x  is the minimum point of the function (3.1), then (see in [8] and 
[13]): 

1( )p x x M g−= −  where ( ( ))g f p x∈∂  (3.5) 

In [13] it is also proved that for all 1 2, nx x R∈  the next formula: 

2
1 2 1 2 1 2( ) ( ) ( ), ( ) ( )

M
p x p x M x x p x p x− ≤ − −  (3.6) 

is valid, namely the mapping ( )x p x→  , where ( )p x  is defined by (3.2), is Lipschitzian 

with constant 
λ
Λ  (see Proposition 2.3. in [13]). 

Lemma 6: The following statements are equivalent: 

(i) x  minimizes f ;  

(ii) ( )p x x=   

(iii) ( ) 0F x∇ =  

(iv) x  minimizes F ;  

(v) ( ( )) ( )f p x f x= ;  

(vi) ( ) ( )F x f x=  

Proof. See in [8] or [23]. 

 

4. DINI SECOND UPPER DIRECTIONAL DERIVATIVE 

We shall give some preliminaries that will be used in the remainder of the paper. 
Definition 6. [22] The second order Dini upper directional derivative of the function 

1f LC∈  at the point nx R∈  in the direction nd R∈ is defined to be 

[ ]
0

( ) ( )
( , )

T

D

f x d f x d
f x d lim sup

α

α
α↓

∇ + −∇ ⋅
′′ = . If f∇ is directionally differentiable at kx , 
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we have that [ ]
0

( ) ( )
( , ) ( , )

T

D k k

f x d f x d
f x d f x d lim

α

α
α↓

∇ + −∇ ⋅
′′ ′′= =  holds for all nd R∈ . 

Since the Moreau-Yosida regularization of a proper closed convex function f  

is an 1LC  function, we can consider its second order Dini upper directional derivative at 
the point nRx∈  in the direction nRd ∈ . Using (3.4) we can state that: 

( ) ,, 21 d
gg

limsupdxF
0

D αα

−
=′′

↓  
where ( )F x  is defined by (3.1) and 1 2( ( )), ( ( ))g f p x d g f p xα∈∂ + ∈∂ . 

Lemma 7: Let : nf R R→  be a closed convex proper function and F is its Moreau –

Yosida regularization. Then the next statements are valid. 

(i) 
2( , ) ( , )D k D kF x kd k F x d′′ ′′=  

(ii) 1 2 1 2( , ) 2( ( , ) ( , ))D k D k D kF x d d F x d F x d′′ ′′ ′′+ ≤ +  
(iii) 2( , )D kF x d K d′′ ≤ ⋅ , where K is some constant. 

Proof. See in [1] and [22]. 
Lemma 8. Let : nf R R→  be a closed convex proper function and let F be its Moreau –
Yosida regularization. Then the next statements are valid. 

(i) ( , )DF x d′′ is upper semicontinous with respect  
to ( , )x d ,i.e. ( , ) ( , )D i i D

i
limsup F x d F x d

→∞

′′ ′′≤  when ( , ) ( , )i ix d x d→  

(ii)  { }2( , ) ( )T
DF x d max d Vd V F x′′ = ∈∂   

 
Proof. See in [1] and [22]. 

 

5. SEMI-SMOOTH FUNCTIONS AND OPTIMALITY CONDITIONS 

Definition 7: A function : n nF R R∇ →  is said to be semi-smooth at the point nx R∈  if 
F∇  is locally Lipschitzian at nx R∈  and the limit { } ( )2

0

,
h d
lim Vh V F x h
λ

λ
→
↓

∈∂ +  exists for 

any nd R∈ . 
Note that for a closed convex proper function, the gradient of its Moreau-Yosida 

regularization is a semi-smooth function. 
Lemma 9. [22]: If : n nF R R∇ →  is semi-smooth at the point nx R∈ , then F∇  is 
directionally differentiable at nx R∈  and for any 2 ( ), 0V F x h h∈∂ + →  we have that: 

( ) ( , ) ( )Vh F x h o h′− ∇ = . Similarly we have that 2( , ) ( )Th Vh F x h o h′′− = . 
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Lemma 10: Let : nf R R→  be a proper closed convex function and let F  be its 
Moreau-Yosida regularization. So, if nx R∈  is a solution of the problem (1.1), then 

( , ) 0F x d′ =  and ( , ) 0DF x d′′ ≥  for all nd R∈ . 
Proof. See in [6]. 
Lemma 11. Let : nf R R→  be a proper closed convex function, F  its Moreau-Yosida 

regularization, and x  a point from nR . If ( , ) 0F x d′ =  and ( , ) 0DF x d′′ >  for all nd R∈ , 
then nx R∈  is a strict local minimizer of the problem (1.1). 
Proof. See in [6]. 
 

6. A MODEL ALGORITHM 

In this section an algorithm for solving the problem (1.1) is introduced. We 
suppose that at each nx R∈  it is possible to compute ( ), ( ),f x F x  ( )F x∇  and 

( , )DF x d′′  for a given nd R∈ . 
At the k-th iteration the direction vector 0ks ≠  in (1.2) is any vector satisfying 

the nonascent property, i.e. ( ) 0T
k kF x s∇ ≤  holds, and the direction vector kd  presents a 

solution of the problem 

1( ), ( ) ( ) ( , )
2n

T
k k k D k

d R
min d d F x d F x d
∈

′′Φ Φ = ∇ +  (6.1) 

where ( , )D kF x d′′  stands for the second order Dini upper directional derivative at kx  in the 

direction d . Note that if Λ  is a Lipschitzian constant for F , it is also a Lipschitzian 

constant for F∇ . The function ( )k dΦ  is called an iteration function. It is easy to see that 

(0) 0kΦ = , and ( )k dΦ  is Lipschitzian on nR .  

For the given q , where 0 1q< < , the step-size 0kα >  is a number satisfying 
( )i k

k qα = ,where ( )i k  is the smallest integer from 0,1,...i =  such that the following two 
inequalities are satisfied: 

2 41( ) ( ) ( ) ( , )
4

T
k k k k k k k k k k D k kF x s d F x F x s F x dα α σ α α⎡ ⎤′′+ + − ≤ ∇ −⎢ ⎥⎣ ⎦

 (6.2) 

and 

2
4

2 ( )
( 2 (2 ) ) ( ) 1 (2 ) ( , )

2

T
k k k

k k k k k k
k D k k

F x s
F x s d F x

F x d

α
α α σ

α

⎡ ⎤∇
⎢ ⎥+ + − > ⎢ ⎥′′−
⎢ ⎥⎣ ⎦

 (6.3) 

where 0 1σ< <  is a reassigned constant, and 0
nx R∈  is a given point. 
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We make the following assumptions. 
A1. We suppose that there exist constants 2 1 0c c≥ >  such that    

2 2
1 2( , )D kc d F x d c d′′≤ ≤  for every nd R∈  (6.4) 

A2. 1kd =  and 1, 0,1,...ks k= =  
A3. There exists a value 0γ >  such that  

2( ) , 0,1,2,...T
k k kF x s s kγ−∇ ≥ =  (6.5)  

A4. ( ) 0 ( ) 0,T
k k kF x s F x k∇ → ⇒ ∇ → →∞   

It follows from Lemma 3.1 in [22] that under the assumption A1, the optimal 
solution of the problem (6.1) exists. 

In order to have a finite value ( )i k  satisfying (6.2), it is sufficient that ks  and 

kd  have descent properties, i.e. ( ) 0T
k kF x s∇ <  and ( ) 0T

k kF x d∇ <  whenever 
( ) 0kF x∇ ≠ . The first relation follows from (6.5). Relating to the second condition, if 

0kd ≠  is a solution of (6.1), it follows that ( ) 0 (0)k k kdΦ ≤ = Φ . Consequently, using 
(6.4), we get 

2
1

1 1( ) ( , ) 0
2 2

T
k k D kF x d F x d c d′′∇ ≤ − ≤ − <  (6.6)  

i.e. kd  is a descent direction at kx . 
Now, suppose that for some ( )i k

k qα =  the inequality (6.2) holds, but the 
inequality (6.3) does not hold. In other words, we have the following: 

2 41( ) ( ) ( ) ( , )
4

T
k k k k k k k k k k D k kF x s d F x F x s F x dα α σ α α⎡ ⎤′′+ + − ≤ ∇ −⎢ ⎥⎣ ⎦

 

and 

2 41( 2 (2 ) ) ( ) 2 ( ) (2 ) ( , )
2

T
k k k k k k k k k k D k kF x s d F x F x s F x dα α σ α α⎡ ⎤′′+ + − ≤ ∇ −⎢ ⎥⎣ ⎦

 

that is, if there is no j  for which 2j
kα  satisfies (6.3), we shall obtain 

2
4

2 ( )
( 2 (2 ) ) ( ) , 0,1, 2,...1 (2 ) ( , )

2

j T
k k k

j j
k k k k k k j

k D k k

F x s
F x s d F x j

F x d

α
α α σ

α

⎡ ⎤∇
⎢ ⎥+ + − ≤ =⎢ ⎥′′−
⎢ ⎥⎣ ⎦

 

The right side of the above inequality tends to −∞  as j →∞ , that is,  
2( 2 (2 ) ) ( )j j

k k k k k kF x s d F xα α+ + − → −∞  as j →∞  , which is the contradiction since 
F  is, because of the assumptions, bounded below on the compact set 0( ).L x  Therefore, 
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for some j , both inequalities (6.2) and (6.3) will be satisfied. Consequently, our 
algorithm is well-defined. 

The inequality (6.3) guarantees a suitable reduction in F , which means that 
( )F x  is decreased by at least a multiple of the modulus of the directional derivative 

( )T
k k kF x sα ∇  and 41 ( , )

2 k D k kF x dα ′′− . As 0kα =  satisfies this inequality, it is necessary to 

introduce another condition that prevents too small kα  to be chosen. This is the purpose 
of the inequality (6.2). 
Proposition 3. If  the Moreau-Yosida regularization ( )F ⋅ of the proper closed convex 
function ( )f ⋅  satisfies the condition (6.4), then: 

(i)  the function ( )F ⋅  is uniformly convex, and hence, strictly convex; 

(ii)  the level set { }0 0( ) : ( ) ( )nL x x R F x F x= ∈ ≤  is a compact convex set, and 

(iii)  there exists a unique point *x  such that 
0

*

( )
( ) ( )

x L x
F x min F x

∈
= . 

Proof. See in [6]. 

Convergence theorem . If the Moreau-Yosida regularization ( )F ⋅  of the proper closed 
convex function ( )f ⋅  satisfies the assumptions A1, A2 ,A3 and A4, then for any initial 
point xxRx k

n →∈ ,0 , as k →∞ , where x  is a unique minimal point of the function f. 
Proof. From (6.2), (6.5) and (6.6) it follows that 

( ) 4 ( )
1

1( ) ( ) ( ) ( , ) 0
4

i k T i k
k k k k D k kF x F x q F x s q F x dσ+

⎡ ⎤′′− ≤ ∇ − <⎢ ⎥⎣ ⎦
 (6.7) 

Hence { }( )kF x  is a decreasing sequence, and consequently { } 0( )kx L x⊂ . 

Since 0( )L x  is by Proposition 3 a compact convex set, it follows that the sequence { }kx  

is bounded. Therefore there exist accumulation points of { }kx . Since F∇  is by 
assumption continuous, then, if ( ) 0kF x∇ →  as k →∞ , it follows that every 
accumulation point x  of the sequence { }kx  satisfies ( ) 0F x∇ = . Since F  is by 
Proposition 3 strictly convex, it follows that there exists a unique point 0( )x L x∈  such 
that ( ) 0F x∇ = . Hence, { }kx  has a unique limit point x  – and it is a global minimizer. 
Therefore, we have to prove that ( ) 0kF x∇ →  as k →∞ .  

We first show that the set of indices { }( )i k  is uniformly bounded above by a 
number I , i.e. ( )i k I≤ < ∞  . Suppose the contrary. By the definition of ( )i k  from (6.2) 
it follows that  

( ) ( )1 4 4( ) 1 2 ( ) 2 1( ) ( ) ( ) ( , )
4

i k i ki k i k T
k k k k k k D k kF x q s q d F x q F x s q F x dσ − −− − ⎡ ⎤′′+ + − > ∇ −⎢ ⎥⎣ ⎦

 

By the definition of the Dini derivative and by (6.4), we have 
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( ) 1 2 ( ) 2

( ) 1 2 ( ) 2 ( ) 1 2 ( ) 2 2 ( ) 2

2( ) 1 2 ( ) 2 ( ) 1 2 ( ) 2 2 ( ) 2
1

( ) 1

( ) ( )
1( ) ( ) ( , ) ( )
2
1( ) ( ) ( )
2

(

i k i k
k k k k

i k T i k T i k i k i k
k k k k k D k k k

i k T i k T i k i k i k
k k k k k k k

i k

F x q s q d F x

q F x s q d F x d F x q s q d o q

q F x s q d F x d c q s q d o q

q F x

− −

− − − − −

− − − − −

−

+ + −

′′= ∇ + ∇ + + +

≥ ∇ + ∇ + + +

= ∇
22 ( ) 2 2 ( ) 2 ( ) 1 2 ( ) 2

1

( ) 1 4 ( ) 4

1) ( ) ( )
2

1( ) ( , )
2

T i k T i k i k i k
k k k k k k k

i k T i k
k k D k k

s q d F x d c q s q d o q

q F x s q F x dσ

− − − −

− −

+ ∇ + + +

⎡ ⎤′′> ∇ −⎢ ⎥⎣ ⎦
 

Accumulating all terms of order higher than 2 ( ) 2( )i kO q −  into the term 2 ( ) 2( )i ko q −  
(because 1k ks d= = ) and using the fact that ( ) 0T

k kF x d∇ ≤  (by (6.6)) yields 

22 ( ) 2 2 ( ) 2 ( ) 1
1

1 ( ) ( 1) ( ) 0
2

i k i k i k T
k k kc q s o q q F x sσ− − −+ > − ∇ ≥  since 0 1σ< <  and 

( ) 0T
k kF x s∇ ≤ . Dividing by ( ) 1i kq −  yields 

2( ) 1 ( ) 1
1

1 ( ) ( 1) ( ) 0
2

i k i k T
k k kc q s o q F x sσ− −+ > − ∇ ≥ . Dividing by 2

1 1
1 1

2 2kc s c
q q

=  yields 

( ) 1
( ) 1

1 1

2( 1) ( )( )
i k

i k T
k k

q o q qq F x s
c c

σ −
− −
> ∇ + . Taking the limit as ,k →∞  and having in 

view (6.5), we get ( ) ( ) 1

1

2(1 ) ( ) 0.i k i kqq o q
c
σ γ −−

> + >  

Hence, ( )i k
k qα =  is bounded away from zero, which contradicts the assumption 

that the sequence { }( )i k  is unbounded. Hence ( )i k I≤ < ∞  for all k. From (6.2), it 
follows that    

( ) 4 ( )
1

4

1( ) ( ) ( ) ( ; )
2

1( ) ( ; )
2

i k T i k
k k k k D k k

I T I
k k D k k

F x F x q F x s q F x d

q F x s q F x d

σ

σ

+
⎡ ⎤′′− ≤ ∇ − ∇⎢ ⎥⎣ ⎦

⎡ ⎤′′≤ ∇ − ∇⎢ ⎥⎣ ⎦

 (6.8) 

Hence, multiplying this inequality by (–1), we get 
4

1
1( ) ( ) ( ) ( ; )
2

I T I
k k k k D k kF x F x q F x s q F x dσ+

⎡ ⎤′′− ≥ ∇ − ∇⎢ ⎥⎣ ⎦
. 

Since { }( )kF x  is bounded below (on the compact set 0( )L x ) and monotone (by 
(6.8)), it follows that 1( ) ( ) 0k kF x F x+ − →  as .k →∞  Hence from (6.8) it follows that 

( ) 0T
k kF x s∇ →  and  ( ; ) 0D k kF x d′′∇ →  as .k →∞  Finally, from A4, it follows that 
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( ) 0,kF x k∇ → →∞ , and from Lemma 6, it follows that x  is a unique minimal point 
of the function f . 
 

Convergence rate theorem Under the assumptions of the previous theorem we have that 

the following estimate holds for the sequence { }kx  generated by the algorithm. 

  ( ) ( ) ( ) ( )
( )

1
1

0
2

1
2
0

0 1

−
−

=

+

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

∇

−
+≤− ∑

n

k k

kk
n

xF

xFxF
xFxF

η
μ

μ , for ,...3,2,1=n  

where ( ) ( )xFxF −= 00μ , and 0diam ( )L x η= < ∞  (since by Proposition 3 it follows 

that ( )0xL is bounded). 
Proof . The proof directly follows from Theorem 9.2, page 167, in [11]. 
 
 

CONCLUSION 

The algorithm presented in this paper is based on the algorithms from [2], [3], 
[22] and [6]. The convergence is proved under mild conditions. This method uses 
minimization along a plane, defined by vectors ks  and kd , to generate a new iterative 

point at each iteration. Relating to the algorithm in [3], the presented algorithm is defined 
and it converges for noonsmooth convex function. 
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