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Abstract: This paper develops an inventory model for a hypothesized volume flexible 
manufacturing system in which the production rate is stock-dependent and the system 
produces both perfect and imperfect quality items. The demand rate of perfect quality 
items is known and constant, whereas the demand rate of imperfect (non-conforming to 
specifications) quality items is a function of discount offered in the selling price. In this 
paper, we determine an optimal production-run time and the optimal discount that should 
be offered in the selling price to influence the sale of imperfect quality items produced by 
the manufacturing system. The considered model aims to maximize the net profit 
obtained through the sales of both perfect and imperfect quality items subject to certain 
constraints of the system. The solution procedure suggests the use of ‘Interior Penalty 
Function Method’ to solve the associated constrained maximization problem. Finally, a 
numerical example demonstrating the applicability of proposed model has been included. 
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1. INTRODUCTION 

In the classical Economic Production Quantity (EPQ) model, the production rate 
of a manufacturing system is regarded to be pre-determined and inflexible. However, 
with changing trends, it has been noticed that the ability of manufacturing system to 
respond to variations has opened up a new level of competition. Today, flexibility has 
become an important tool to gain a competitive edge in a business environment. 
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Schweitzer and Seidmann[17] were the first who introduced the concept of 
flexibility in machine production rate in discussing the optimum processing rates for a 
Flexible Manufacturing System (FMS). Khouja and Mehrez[4] extended the Economic 
Production lot size model to an imperfect production process with a flexible production 
rate. Silver[18]  discussed the reduced production rates in the context of manufacturing 
equipment dedicated to the production of a family of items, assuming a common cycle 
for all items. Controllable production rates in a family production context were also 
considered by Moon, Gallego and Simchi-Levi[7]. Gallego[2] extended the model of 
Silver[18] by removing the stipulation of a common cycle for all the items. 

But, the above studies did not consider the production rate to depend on existing 
stock-level. In most real life situations, it is found that the production lot size also 
depends on the on-hand inventory level. The higher the existing stock level, the lower is 
the production. This type of volume flexibility can be easily seen as an important factor 
of a Flexible Manufacturing System (FMS) in which CNC machines are used to control 
the speed of production. Thus, in this paper we consider a volume flexible manufacturing 
system in which the production system is capable of adjusting the production rate 
depending on the existing stock level. 

Moreover, in a manufacturing setup, it can be examined that incorporating 
flexibility into the system tends to decrease system efficiency due to which a certain 
percentage of total items produced could be found to be of imperfect quality (non-
conforming to specifications). Several studies have been conducted by various 
researchers on an imperfect production/ordering system. Most researchers have 
considered that while producing a lot, a production process may go from the “in-control” 
state to the “out-of-control” state. As a result, the produced lot would contain both perfect 
and imperfect quality products. Rosenblatt and Lee[10] studied the effects of an 
imperfect production process on the optimal production-run time by assuming an elapsed 
time until shift is exponentially distributed, and Porteus[9] assumed that the probability 
of a shift from the “in-control” state to the “out-of-control” state has a given value for 
each item produced. Khouja and Mehrez[4] considered that in an “out-of-control” state, a 
certain percentage of total products is defective, which is reworked at the cost. Sana[16] 
extended their work by considering the shift to happen at any random time. Salameh and 
Jaber[11] developed an EOQ model considering the lot to contain a random fraction of 
imperfect quality items with a known probability distribution. They assumed that each 
shipment undergoes a 100% screening process, and that the items found to be of 
imperfect quality are sold at discounted price as a single batch at the end  of the screening 
process, and thus are instantly removed from the system. Several researchers have 
extended the work of Salameh and Jaber[11]. Cárdenas-Barrón[1] observed a minor 
correction for the expression of optimal lot size. Goyal and Cárdenas-Barrón[3] presented 
a simple approach which approximately determines the order quantity when a random 
proportion of units are defective. Papachristos and Konstantaras[8] examined the model 
of Salameh and Jaber’s model closely and discussed many of its assumptions, and in 
particular, those aimed at avoiding shortages. Maddah and Jaber[6] applied the concept 
of Renewal Theory to Salameh and Jaber’s model to obtain a simple expression for the 
optimal order quantity and expected profit. Recently, Sana, Goyal and Chaudhuri[14]  
have extended an EPLS (Economic Production Lot Size) model which accounts for 
production system producing items of perfect as well as imperfect quality. The 
probability of imperfect quality items increases with the increase in production-run-time 
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because of machinery problems, impatience of labor staff, and improper distribution of 
raw materials. They have assumed that the demand rate of perfect quality items is 
constant, whereas the demand rate of defective items which are not repaired is a function 
of reduction rate. In another model, Sana, Goyal and Chaudhuri[15] have developed a 
volume flexible inventory model with an imperfect production system where demand rate 
of conforming quality items is a random variable, and the demand rate of defective items 
is a function of a random variable and reduction rate. 

The author’s survey of the relevant literature reveals that there is no published 
work that investigates an imperfect production process for volume flexibility defined by 
stock-dependent production rate. Therefore, this paper extends the work of Sana, Goyal 
and Chaudhuri[14]by considering the stock-dependent production rate for an imperfect 
production process in which a fixed percentage of the produced items is found to be of 
imperfect quality on inspection. The demand rate of perfect quality items is known and 
constant, whereas the demand rate of defective items which are not repaired is a function 
of discount offered in the selling price. In this paper, we determine an optimal 
production-run time and the optimal discount that should be offered in the selling price to 
influence the sale of imperfect quality items produced by the manufacturing system in 
which the production rate is stock-dependent. This is achieved by maximizing the net 
profit obtained through the sales of both perfect and imperfect quality items subject to 
certain constraints of the system. 

This paper is organized as follows: 1. Introduction; 2. Notations and 
Assumptions; 3. Mathematical Model; 4. Numerical Example and Concavity of function; 
5. Conclusion; 6. Appendix; 7. References. 

 
 

2. NOTATIONS AND ASSUMPTIONS 

 
The notations adopted in this paper are as follows: 

1d   demand rate of perfect quality items 

2d   deterministic factor of the demand rate of imperfect quality items 
)(1 tQ  inventory of perfect quality items at any time )0('' ≥t  
)(2 tQ  inventory of imperfect quality items at any time )0('' ≥t  

hC   holding cost per unit per unit time 

cI   unit inspection cost  
η   unit production cost 
S  unit selling price of a perfect quality item 
r  discount (in %) given in selling price for imperfect quality items 
n  fixed positive integer 
T  length of an inventory cycle of perfect quality items 
T ′  length of an inventory cycle of imperfect quality items 
1t  production run time 
( ))(),( 21 tQtQP  production rate is dependent on the on-hand inventory level of both 

perfect and imperfect quality items, i.e. 
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( ) )()()(),( 221121 tQtQtQtQP ββα −−=  where 21  and , ββα  are constants, 
.10 ,10 21 ≤≤≤≤ ββ  

λ  percentage of perfect quality items in the produced lot, 10 ≤≤ λ . 
 

The following assumptions have been made: 
1. The demand rate of perfect quality items is constant and deterministic. 
2. The demand rate of imperfect quality items is a function of the discount 

given in selling price. 
3. The produced items undergo a 100% inspection process that separates 

perfect and imperfect quality items. 
4. Shortages are not allowed. 
5. Lead time is negligible. 
6. The discount to be offered in the selling price is considered as a decision 

variable. 
7. The production run time is considered to be a decision variable. 
8. Planning horizon is infinite. 
 

3. MATHEMATICAL FORMULATION OF THE MODEL 

Consider a volume flexible manufacturing system in which the production rate 
is dependent on the on-hand inventory level. The higher the existing stock, the lower the 
production rate is. During a production run, the system manufactures both perfect and 
imperfect quality items. The produced items simultaneously undergo a 100% inspection 
process at a cost ‘ cI ’ per unit that separates perfect and imperfect quality items. The 
perfect quality items can be sold at a selling price of ‘ S ’ per unit and have a constant 
demand rate  1d . The produced lot contains a fixed percentage of imperfect quality items 
which can be sold at a discounted price )1( rS −  per unit, where 10 << r  is the discount 
given to influence the demand of imperfect quality items. Moreover, the demand rate of 
imperfect quality items is ;

1 2d
r

r n

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
)0,10( 2 ≥<< dr , which is an increasing function of r as 

n  is a fixed positive integer (Refer to Sana, Goyal and Chaudhuri[14]).  
The production cycle starts at time 0=t  with zero inventory level and is 

continued till time 1t . During the time interval ),0( 1t , system manufactures both perfect 
and imperfect quality items at a stock-dependent rate. The system simultaneously 
inspects all the manufactured items and filters them into perfect and imperfect quality 
items. Till time 1t , manufactured items are utilized to serve the demand of perfect and 
imperfect quality items as well as pile up inventories. After time 1t , the piled inventories 
are utilized to meet the demands. The inventory of perfect and imperfect quality items 
fall to the zero level at time Tt = and Tt ′= , respectively. Figure 1 shows the behavior 
of the inventory system during a production cycle. 
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Therefore, the differential equations are: 

[ ] ,10 ,10  ,0     ;      )()(.
d

)(d
21112211

1 ≤≤≤≤≤≤−−−= ββββαλ ttdtQtQ
t
tQ  (1) 

with 0)0(1 =Q , 

,      ;      
d

)(d
11

1 Tttd
t

tQ
≤≤−=  (2) 

with 0)(1 =TQ  

[ ]  ,10 ,10  ,0   ;    
1

)()().1(
d

)(d
21122211

2 ≤≤≤≤≤≤
−

−−−−= ββββαλ ttd
r

rtQtQ
t

tQ n
(3) 

with 0)0(2 =Q  and 

 ,     ;    
1d

)(d
12

2 Tttd
r

r
t

tQ n
′≤≤

−
−=  (4) 

with 0)(2 =′TQ . 

Let, D
t
≡

d
d  then for 10 tt ≤≤ , equation (1) and (3) can be written as 

[ ] 12211 )()( dtQtQD −=++ λαλβλβ  (5) 

[ ] 22211 1
)1()()1()()1( d

r
rtQDtQ

n

−
−−=−++− αλβλβλ  (6) 

Multiply (5) by [ ]2)1( βλ−+D & (6) by 2λβ  and then subtract, so we get 

( )[ ] 1222121
2 )1(

1
)()1( d

r
rdtQDD

n
βλλββλλβ −−

−
=−++  
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i.e. ( ) 1222
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Let, 
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1 βλλβ −+
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=  and zvQ .1 =  where v and z  are functions of t . Then 
equation (7) becomes 
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Solving the second order differential equation in (8), we get 
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From equations (1), (9) and (10) we get 
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Using initial condition 0)0(1 =Q and 0)0(2 =Q , we get 
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Now, for Ttt ≤≤1  using equations (2), (12) and initial condition 0)(1 =TQ , 
we get 
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Similarly for Ttt ′≤≤1  using equations (4), (13) and initial condition 0)(2 =′TQ , 
we get 
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Equation (14) and 0)(1 =TQ implies 

( )
[ ] ( )( )

( )                                                               .
1)1(

            

1.)1(
1)1(

1

111
22

21

)1(
11

2
22

211

121

⎭
⎬
⎫

⎭
⎬
⎫

⎩
⎨
⎧

+
−−+

+

⎪⎩

⎪
⎨
⎧

−
⎭
⎬
⎫

⎩
⎨
⎧

−+⎥
⎦

⎤
⎢
⎣

⎡
−−

−−+
= −+−

td
r
rd

ed
r

rd
d

T

n

t
n

ββ
βλλβ

λ

λαβαλβ
βλλβ

λ βλλβ

  (16) 

Similarly, equation (15) and 0)(2 =′TQ  implies 
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For feasibility of 1t  in the practical situation, we must have  
(i) Tt << 10 i.e. 10 t<  and 01 >− tT . 
(ii) Tt ′≤1  i.e. 01 ≥−′ tT  

Also TT ≤′  otherwise, the inventory of imperfect quality items will get carried 
to the next cycle. 

Moreover, the total production of each cycle must be greater than or equal to the 
demand of perfect and imperfect quality items occurring in each cycle, i.e. it must be 

greater than or equal to 21 1
d

r
rd

n

−
+ . 
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The Net Profit from each production cycle is given by 

=)( 1,rtπ Revenue from perfect quality items + Revenue from imperfect quality items 

                 – Total production cost – Total Inspection cost – Total Inventory cost. 
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(v) 10 << r . 

The above optimization problem can be solved by ‘Interior Penalty Function 
Method’ for the optimal values of 1t and r . (See Appendix) 

 
Special Case: When r  is known and fixed. )10( << r  
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Thus, the value of 1t (say 1t′ ) obtained by setting 0
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4. NUMERICAL EXAMPLE AND CONCAVITY OF THE 

FUNCTION 

Example1.Let the values of our model parameters in their appropriate units be 
,2=n ,9.0=λ ,160$=η ,20$=hC ,10$=cI ,200$=S ,2100=α ,2.01 =β ,3.02 =β

,15001 =d .10002 =d  
Then, using the interior penalty function method for our problem, we get 

optimal production-run time, ;10636.13*
1 =t  optimal discount, ;3459169.0* =r  

Maximum profit, 50.179118$),( **
1

* =rtπ ; Total Production of the cycle = 23977 units; 

38612.14* =T  and .10636.13* =′T  
We now generate a graph of ),( 1 rtπ  based on the parameter values taken in 

numerical example 1 to depict the concavity of the function (Fig. 2). 
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Example 2. Using the same values of parameters as mentioned in example 1 and taking a 
fixed value of  35.0=r , and solving for the optimal value of 1t  we get 549684.8*

1 =t ; 

Maximum profit, 00.169640$)( *
1

* =tπ ; Total Production of the cycle = 16113units; 

667719.9* =T and 549684.8* =′T . (Fig. 3). 
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Figure 3. Concavity of the Profit Function )( 1tπ when r is fixed 

5. CONCLUSION 

This paper presents an inventory model to calculate the optimal production-run 
time for a system which manufactures both perfect and imperfect quality items and is 
volume flexible. The production rate of the system depends on the on-hand inventory 
level. The proposed model considers the demand rate of perfect quality items to be 
constant and that of imperfect quality items to depend on the discount rate offered in the 
selling price to influence the sales of imperfect quality items. Thus, the model also aims 
at finding the optimal value of the discount rate along with the production-run time that 
maximizes the total net profit. This paper also examines the model under the condition of 
a fixed discount rate. Finally, it includes some numerical examples to demonstrate the 
applicability of the proposed model. 

The future research on this model aims at extending it by allowing for partial or 
complete backordering. 

 
6. APPENDIX 

Primal problem (General form): 

Minimize )(XΠ  = - Maximize )(XΠ  

such that .,.....,2,1      ,0)( mjXG j =≤  
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where )(XΠ , )(XG j are continuous functions of nRX ∈  
The above problem can be re-written as the following unconstrained 

optimization problem. 
Interior penalty method: This method generally deals with an unconstrained 
minimization problem. The general form of the problem equivalent to the Primal 
Problem is: 

Minimize ∑
=

−=
m

j j
kkk XG

rXrX
1 )(

1)Π(),(χ , 

where kr  is a positive penalty parameter. 
If kχ  is minimized for a sequence of decreasing values of kr , the following 

theorem proves that the unconstrained minima ),....,2,1( mkXk =∗ converges to the 
solution *X of the primal problem stated above. 

 
Theorem: If the primal problem has a solution, the unconstrained minima 

∗
kX of ),( rXkχ for a sequence of values ,21 krrr >⋅⋅⋅⋅>> converge to the optimal solution 

of the primal problem. 
The iterative procedure: 

Step 1: Start with an initial feasible point 1X satisfying all the constraints with 
strict inequality sign, i.e., 0)( 1 <XG j for mj ,.....,2,1=  and a suitable initial value of 1r  
where .

)(
1

)(

1 1

1
1

∑
=

Π
−= m

j j XG

Xr Set 1=k . 

Step 2: Minimize ),( kkk rXχ by using any method of unconstrained 
minimization (we may use here the Devidon Fletcher– Powell Method) and obtain the 
solution ∗

kX . 

Step 3: Test whether 2
*

1
*

1*

*
1

*

)(
)()(

<∈−≤∈
Π

Π−Π
−

+
kk

k

kk XX
X

XX where 1∈ and 2∈ are 

arbitrarily small positive numbers. If it is satisfied, then terminate the process; otherwise, 
go to the next step. 

Step 4: Find the value of the next penalty parameter r  as kk crr =+1 where 
10 << c . 

Step 5: Set the new value of 1+= kk , take the new starting point as 
*

1 kXX = and then go to step 2. 
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