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Abstract: In this paper, we consider an integrated vendor-buyer inventory policy for a 
continuous review model with a random number of defective items and screening process 
gradually at a fixed screening rate in buyer’s arriving order lot. We assume that shortages 
are allowed and partially backlogged on the buyer’s side, and that the lead time demand 
distribution is unknown, except its first two moments. The objective is to apply the 
minmax distribution free approach to determine the optimal order quantity, reorder point, 
lead time and the number of lots delivered in one production run simultaneously so that 
the expected total system cost is minimized. Numerical experiments along with 
sensitivity analysis were performed to illustrate the effects of parameters on the decision 
and the total system cost. 
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1. INTRODUCTION 

In recent years, most inventory problems have their focus on the integration 
between the vendor and the buyer. For supply chain management, establishing long-term 
strategic partnerships between the buyer and the vendor is advantageous for the two 
parties regarding costs, and therefore profits since both parties, to achieve improved 
benefits, cooperate and share information with each other. Several researchers have 
shown that the buyer and the vendor can achieve their own minimal total cost, or increase 
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their mutual benefit through strategic cooperation with each other. Goyal [7] first 
developed an integrated inventory model for a single supplier-single buyer problem. In 
his study, the joint approach to the inventory problem faced by a single supplier-single 
buyer of a product has been formulated with the help of an integrated inventory model. 
Later, Banerjee [2] generalized Goyal’s model [7] and developed a joint economic-lot-
size model for the case in which a vendor produces on an order of a buyer on a lot-for-lot 
basis under deterministic conditions. Then Goyal [8] extended Banerjee’s model [2] and 
suggested that the vendor’s economic production quantity per cycle should be a positive 
integer multiple of the buyer’s purchase quantity. A review of related literature on buyer-
vendor coordination models prior to 1989 is given in [9].  

Lu [20] relaxed the assumption [8] about completing a batch before starting 
shipments, and investigated a model that allowed shipments to take place during 
production, and the delivery quantity to the buyer is identical. Ha and Kim [11] further 
modified Goyal’s model [8] and proposed an integrated JIT lot-splitting model to 
facilitate multiple shipments in small lots. In the same year, Hill [13] proposed a more 
general shipping policy for an integrated production inventory model by considering 
successive shipment sizes increased by a general fixed factor. And then, Hill [14] derived 
a globally-optimal batching and shipping policy for the single-vendor single-buyer 
integrated production-inventory problem. Goyal and Nebebe [10] further proposed an 
integrated inventory model in which the first shipment is smaller and is followed by 
shipments of the equal size. Pan and Yang [27] improved Goyal’s model [8] by 
considering lead time as a decision variable, and obtained a lower joint total expected 
cost and shorter lead time. Recently, Ouyang et al. [23] extended Pan and Yang’s model 
[27] by simultaneously optimizing ordering quantity, reorder point, lead time and the 
number of lots delivered in one production cycle. The aforementioned research on the 
integration vendor-buyer inventory problem focused on the production shipment 
schedule, in terms of the number and the size of batches transferred between both parties, 
neglecting the relationship between order lot and quality. A common unrealistic 
assumption of the above joint inventory models is that all the produced items are of good 
quality. However, as a result of imperfect production processes of the vendor, damage in 
transit, or other unforeseeable circumstances, an order lot arriving at the buyer often 
contains defective items. These defective items will affect the on hand inventory level, 
customer service level and the frequency of orders in the inventory system. So, 
production/shipment policy determined by conventional integrated inventory models may 
be inappropriate for the situation where an arriving lot contains some defective items. 
Therefore, it is worthwhile studying the effect of defective items on inventory problem. 
Since the pioneering work by Porteus [30] and Rosenblatt and Lee [31], in order to 
surmount the common unrealistic assumption of good quality, many researchers have 
attempted to develop various imperfect-quality inventory models on this important issue. 
Paknejad et al. [25] derived a modified EOQ model with constant lead time and 
stochastic demand (exponentially and uniformly distributed demand during lead time), 
and considered the number of non-defective items in a lot as a random variable. In their 
paper, the shortages are allowed and fully backordered, and the defective items in each 
lot are discovered and returned to the vendor at the time of delivery of the next lot. Wu 
and Ouyang [45] incorporated the assumption of a mixture of backorders and lost sales 
and variable lead time into Paknejad et al.’s model [25] and assumed that all goods are 
quickly inspected. There are more papers related to this issue such as 



 H. J. Lin / An Integrated Supply Chain Inventory Model 89

[1,5,17,29,35,40,44,46], and others. Though, the aforementioned inventory models 
tackled defective items focused on determining an optimal policy just from either the 
buyer’s or the vendor’s point of view. They considered just one-sided optimal inventory 
policies that neglected the complicated interaction and cooperation opportunity between 
the vendor and the buyer. This one-sided optimal strategy can be improved through 
forming an effective alliance with other parties. Huang [15,16] considered an integrated 
vendor-buyer cooperative inventory model for items with imperfect quality under equal-
shipment policy, and assumed that the number of defective items follows a given 
probability density function, and that the vendor treats defective items as a single batch at 
the end of the buyer’s 100% screening process. However, both shortages and lead time 
reduction were not considered. Recently, Ouyang et al. [24] developed an integrated 
inventory systems with fixed defective rate, and assumed that the buyer performs a 100% 
screening process immediately on receiving a lot, i.e., the length of inspection period is 
neglected here, and the vendor treats defective items as a single batch at the end of the 
buyer’s 100% screening process. We notice that the reorder point and shortages were not 
considered. In many practical situations, lead time can be reduced, by an additional 
crashing cost, customer service level improved, inventory in safety stocks reduced, and 
the competitive edge in business increased; in other words, it is controllable. In addition, 
the information about the probability distribution of the lead time demand is often quite 
limited. There are many related studies such as [4,26,28,32,33,34,36,37,38,39,41,42], etc. 

Based on the survey above, in this paper, we extend Wu and Ouyang’s model 
[45] (the inspection process is considered to be a rapid action) and Ouyang et al.’s model 
[23] by considering an integrated supply chain inventory model with gradual screening 
process at a fixed screening rate for a random number of defective items in buyer’s 
arriving order lot, in which the buyer’s order quantity, reorder point, lead time and the 
number of lots delivered in one production cycle are decision variables. We assume that 
an arriving order lot may contain some defective items, and that the number of defective 
items is a binomial random number. Upon the arrival of an order, the buyer performs a 
non-destructive and error-free screening process gradually at a fixed screening rate on 
receiving a lot before selling, rather than inspecting through a rapid action; and all 
defective items in each lot are assumed to be discovered and returned to the vendor at the 
time of delivery of the next lot. So, the buyer will have two kinds of holding cost: non-
defective items holding cost and defective items holding cost. Besides, the basic setting is 
a single-product continuous-review inventory system with a distribution free lead time 
demand; replenishments are made whenever the inventory level reaches the reorder point 
and also, as in [19], we assume that lead time is controllable and shortages, during the 
lead time, allowed. The purpose of this paper is to simultaneously optimize ordering 
quantity, reorder point, lead time and the number of lots delivered in one production 
cycle by using the minmax distribution free approach, originally addressed by Scarf [43] 
(popularized by Gallego and Moon [6]). In addition, we develop an algorithmic 
procedure to determine the optimal inventory policy. Finally, numerical experiments 
along with sensitivity analysis were performed to illustrate the effects of parameters on 
the decision and the total system cost. 

The remainder of this paper is organized as follows. Section 2 details the 
notation and assumptions. In Section 3, we formulate the integrated inventory model 
involving imperfect-quality items and controllable lead time, and then develop an 
algorithmic procedure to find the optimal solution. Section 4 provides a numerical 
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example and discussion of the results. In Section 5, we draw some conclusions and give 
suggestions for some future research. 

 
2. NOTATION AND ASSUMPTIONS 

The following notation and assumptions are used, throughout the paper, to 
develop the proposed models. 
 
Notation: 

S  Vendor’s set-up cost per set-up 
D  Expected demand per unit time on the buyer (for non-defective items) 
P  Production rate on the vendor 
A  Buyer’s ordering cost per order 
F  Transportation cost per delivery 
ω  Vendor’s unit treatment cost of defective items 
π  Buyer’s shortage cost per unit short 

0π  Buyer’s marginal profit (i.e., cost of lost demand) per unit 
β  Fraction of the demand during the stock-out period that will be 

backordered, [0,1]β ∈  

vh  Vendor’s holding cost per item per unit time 

1bh  Buyer’s holding cost per non-defective item per unit time 

2bh  Buyer’s holding cost per defective item per unit time, 2 1b bh h≤  
s  Buyer’s unit screening cost 
x  Buyer’s screening rate  
Q  Order quantity of the buyer for non-defective items (decision variable) 
q  Order quantity of the buyer per order including defective items, i.e., 

shipping quantity from the vendor to the buyer per shipment (decision 
variable) 

r  Reorder point of the buyer for non-defective items (decision variable) 
L  Length of lead time for the buyer (decision variable) 
n  The number of lots in which the product is delivered from the vendor to 

the buyer in one production run, a positive integer (decision variable) 
X  The lead time demand which has a p.d.f. Xf  with finite mean DL  and 

standard deviation Lσ , where σ  denotes the standard deviation of 
the demand per unit time 

Y  The number of defective items in a lot size q  is a random variable  
[ ]E ⋅  Mathematical expectation 

x+  Maximum value of x  and 0, i.e., max{ ,0}x x+ =  
* The superscript representing optimal value 

Assumptions 
1. There is single-vendor and single-buyer for a single-product in this model. 
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2. Inventory is continuously reviewed. The buyer places an order or requests 
for successive shipments when on hand inventory level (based on the 
number of non-defective items) falls to the reorder point r . 

3. The reorder point 
expected demand during lead time + safety stock ( ),r SS=  and 

SS k= × (standard deviation of lead time demand), that is, ,r DL k Lσ= +  
where k  is known as the safety factor. 

4. The lead time L  consists of m  mutually independent components. The i th 
component has the normal duration ib , the minimum duration ia  and the 
crashing cost per unit time ic . Furthermore, these ic  are assumed to be 
arranged such that 1 2 mc c c≤ ≤ ≤L . 

5. The components of lead time are crashed one at a time starting with the 
component of least ic , and so on. 

6. If we let iL  be the length of lead time with components 1, 2, K , i  crashed 

to their minimum duration, then min max1 1

m m
i ii i

L a L b L
= =

= ≤ ≤ =∑ ∑ , 

max 1
( )i

i j jj
L L b a

=
= − −∑ , and the lead time crashing cost per cycle ( )C L  

for a given 1( , ]i iL L L −∈  is given by 1
1 1

( ) ( ) ( )i
i i j j jj

C L c L L c b a−
− =

= − + −∑ . 

7. The extra costs incurred by the vendor will be fully transferred to the buyer 
if shortened lead time is requested. 

8. The buyer orders a lot of size Q  (for non-defective items) and will receive 
the batch quantity in n  equally-sized shipments of size q , where n  is a 
positive integer. 

9. An arriving lot may contain some defective items. We assume that the 
number of defective items, Y , in an arriving order of size q  is a random 
variable which has a binomial distribution with parameters q  and γ  where 
γ  ( 0 1γ≤ < ) represents the defective rate in the order lot. Upon the arrival 
of the order, all the items in the lot are inspected with the screening rate x  
by the buyer, and defective items in each lot are discovered and returned to 
the vendor at the time of delivery of the next lot. 

10. Vendor’s production rate for the non-defective items is greater than buyer’s 
demand rate, i.e., (1 )P Dγ− > . 

11. The screening process and the demand proceed simultaneously, but the 
screening rate is greater than the demand rate. 

 
3. THE BASIC MODEL 

The information about the form of d.f. of the lead time demand is often limited 
in practice. Thus, the conventional assumption of a full knowledge about the form of d.f.s 
for lead time demand may not provide the best protection against the occurrence of other 
distributions. Thus, in this section, we establish an integrated vendor-buyer inventory 
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model involving a mixture of backorders and lost sales, inspections of defective items 
and controllable lead time when only the first two moments of the demand distribution 
are known. During the production run, as soon as the first q  units have been produced, 
the vendor will deliver them to the buyer. After that, the vendor will make a delivery, on 
average, every [( ) / ]E q Y D−  units of time until the inventory level falls to zero, where 
we have assumed that each lot contains a random number of defectives, Y . Upon order 
arrival, the buyer inspects all the items at the fixed screening rate, x , and all defective 
items in each lot are discovered and returned to the vendor at the time of delivery of the 
next lot. In order to reduce the production cost, the vendor manufactures nq  at one set-
up with a finite production rate P  when the buyer orders quantity q , and each batch is 
dispatched to the buyer in n  equally-sized shipments, where n  is a positive integer. 
Therefore, the expected length of each ordering cycle for the buyer is 

[ ] [( ) / ]E T E q Y D= − , and the expected length of each production cycle for the vendor is 
[ ] [( ) / ]E nT nE q Y D= − .  

 
3.1 Buyer’s expected average total cost per unit time 

In this paper, the basic setting is a continuous-review inventory system, and we 
have assumed that shortages are allowed. An order of size q  for successive shipment is 
placed as soon as the buyer’s inventory position (based on the number of non-defective 
items) reaches the reorder point, r . From assumption 3, we can also consider the safety 
factor k  as a decision variable instead of r . Therefore, the expected shortage quantity at 
the end of the cycle is given by [( ) ]E X r +− . Thus, the expected number of backorders 
per ordering cycle is [( ) ]E X rβ +− and the expected loss in sales per ordering cycle is 
(1 ) [( ) ]E X rβ +− − . Thus, the stock-out cost per ordering cycle is 

0[ (1 )] [( ) ]E X rπ π β ++ − − . Upon order arrival, the buyer inspects all the items at the 
fixed screening rate, x , and all defective items in each lot are discovered and returned to 
the vendor at the time of delivery of the next lot. Therefore, the buyer has two kinds of 
holding costs: non-defective items holding cost and defective items holding cost. The 
average inventory level of non-defective items (involving those defective items which are 
not detected in a flaw yet before the end of the screening time, q x ) of q  units order per 
cycle, given that there are y  defective items in an arriving order of size q , can be 
approximated by  

(1 ) [( ) ]
2 ( ) 2

(1 ) [( ) ].
2 ( ) 2

qy q y r DL E X r
x q y D

Dqy q y k L E X r
x q y

β

σ β

+

+

−⎧ ⎫+ + − + − −⎨ ⎬
− ⎩ ⎭

−
= + + + − −

−

 (1) 

Hence, the non-defective holding cost per cycle is  
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1 (1 ) [( ) ] .
2 ( ) 2b

q y Dqy q yh k L E X r
D x q y

σ β +⎧ ⎫− −⎛ ⎞ + + + − −⎨ ⎬⎜ ⎟ −⎝ ⎠ ⎩ ⎭
. (2) 

The buyer’s defective inventory pattern is shown in Figure 1.  

q y−

q x
( )q y D−

( )n q y D−

q

Figure 1: Defective inventory pattern of the buyer 

Similarly, given that there are y  defective items in an arriving order of size q , 
the buyer’s average inventory of defective items per cycle can be obtained as follows. 
The number of non-defective items in each shipment is q y− , and inspection period time 
is q x . Note that all the received items are accounted non-defective until they are 
gradually detected in a flaw. Hence, the buyer’s average inventory of defective items per 
cycle is 

 1 ( )
( ) 2

q y y qy
q y D D x

−⎡ ⎤−⎢ ⎥− ⎣ ⎦
 (3) 

and the defective holding cost per cycle is 

 2
( )

2b
q y y qyh

D x
−⎡ ⎤−⎢ ⎥⎣ ⎦

. . (4) 
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Therefore, the buyer’s total cost per cycle, given that there are y  defective 
items in an arriving shipment of size q , is the sum of the ordering cost, transportation 
cost, total holding cost, stock-out cost, screening cost and lead time crashing cost. 
Symbolically, the buyer’s total cost per cycle can be expressed as: 

[ ]

1

2 0

( , , ; )

(1 ) [( ) ]
2 ( ) 2

( ) (1 ) [( ) ] ( ).
2

b b

b

q yC q r L y A F h
D

Dqy q y k L E X r
x q y

q y y qyh E X r sq C L
D x

σ β

π π β

+

+

−⎛ ⎞= + + ⎜ ⎟
⎝ ⎠

⎧ ⎫−
× + + + − −⎨ ⎬

−⎩ ⎭
−⎡ ⎤+ − + + − − + +⎢ ⎥⎣ ⎦

 (5) 

If we assume that all items are quickly inspected, i.e., x →∞ , then the length of 
inspection period / 0q x =  and Equation (5) reduces to   

1

2
0

( , , ; )

(1 ) [( ) ]
2
( )

[ (1 )] [( ) ] ( ),

b b

b

q yC q r L y A F h
D

q y k L E X r

h q y y
E X r sq C L

D

σ β

π π β

+

+

−⎛ ⎞= + + ⎜ ⎟
⎝ ⎠

−⎧ ⎫× + + − −⎨ ⎬
⎩ ⎭

−
+ + + − − + +

 (6) 

which is the cost per cycle, given that there are y  defective items in an arriving order of 
size q , in Wu and Ouyang’ model [45]. Furthermore, when the vendor promises that the 
arriving order contains no defective items, i.e., 0y = , and hence 20, 0bs h= =  then, 
Equation (6) can be reduced to Moon and Choi’s model [22], and further, if 0σ >  and k  
is sufficiently large, we get [( ) ] 0E X r +− → (see Proposition below); then Equation (6) 
can be reduced to Ben-Daya and Raouf’s model [3]. 

Let the number of defective items in a lot q  be a binomial random variable with 
parameters q  and γ , where γ  ( 0 1γ≤ < ) represents the defective rate in an order lot. 
That is, 

( ) (1 )q Y q Y
r YP Y C γ γ −= − , for 0,1,2, ,Y q= K . (7) 

In this case  

[ ]E Y qγ=  and 2 2 2[ ] (1 )E Y q qγ γ γ= + − . (8) 

The expected length of the cycle time and the expected cycle cost under the lot 
of size q  are 

(1 )[ ] q Y qE T E
D D

γ− −⎡ ⎤= =⎢ ⎥⎣ ⎦
 (9) 
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and 
2

1 1

1

2
2 2

0

(1 )( )
( , , ) [ ( , , ; )]

2 2
(1 ) (1 ) [( ) ]

(1 )( 1)
2

[ (1 )] [( ) ] ( ).

b b
b b

b

b b

h q h q q q
EC q k L E C q k L Y A F

x D
h q k L E X r

D
h q q h q

D x
E X r sq C L

γ γ γ γ

γ
σ β

γ γ γ

π π β

+

+

− − +
≡ = + + +

− ⎡ ⎤+ + − −⎣ ⎦

− −
+ −

+ + − − + +

.(10) 

Therefore, the expected average total cost per unit time for the buyer is 

{ } ( )

( ){ } ( )

( )

11

1 2

2

( , , ) ( , , )
( , , )

( ) (1 )

[( ) ] ( )
(1 ) 2 (1 ) 2

1 [( ) ] 1

,
2 1 1

U b b
b

bb

b b

b

EC q k L EC q k L D
EC q k L

E T q
h q qh q DD A F E X r C L

q x

h k L E X r h q

h q D sD
x

γ
γ γγ

π
γ γ

σ β γ

γ
γ γ

+

+

= =
−

− +
= + + − + + +

− −

+ + − − + −

− +
− −

 .(11) 

where 0 (1 )π π π β= + − . 
If we assume that lead time is prescribed and if 0σ >  and k  is sufficiently 

large, then Equation (11) can be reduced to Paknejad et al.’s model [25]. 
 

3.2. Vendor’s expected average total cost per unit time 

During the production period, when the first q  units have been produced, the 
vendor will deliver them to the buyer, after that the vendor will make the delivery on 
average every [ ]E T  units of time until the vendor’s inventory level reaches zero. 
Because the production rate of vendor’s non-defective items is greater than the buyer's 
demand rate, vendor’s inventory level will increase gradually. When the total required 
amount nq  is fulfilled, the vendor stops producing immediately. Therefore, the vendor’s 
inventory per production cycle can be obtained by subtracting the accumulated buyer 
inventory level from the accumulated vendor inventory level as follows. 

( ) ( ) [ ]
2 2 2

1 1 1 2 ( 1)
2

( 1)
2 2

nq q q nqn T n T n qT
P P P

nq n n qT n q
P P

⎧ ⎫⎡ ⎤ ⎡ ⎤− + + − + − − + + + −⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩ ⎭
−

= + −

L

 (12) 

(refer to [18]). 
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The vendor’s total cost per production cycle is the sum of the set-up cost, 
defective item treatment cost and holding cost. Symbolically, the vendor’s total cost per 
production cycle can be expressed as: 

2 2( 1) ( )( , )
2 2v v

nq n n qT nqC q n S nY h
P P

ω
⎡ ⎤−

= + + + −⎢ ⎥
⎣ ⎦

. (13) 

Therefore, the expected average total cost per unit time for the vendor can be 
obtained as 

2 2 2[ ( , )] ( 1) (1 ) ( )( , )
[ ] 2 2

1 ( 1)(1 ) .
(1 ) (1 ) 1 1 2 2

U v
v v

v

E C q n nq n n q nqEC q n S nq h
E nT P D P

h DqD SD D n n
nq nq P D P

γγω

γω γ
γ γ γ γ

⎧ ⎫⎡ ⎤− −⎪ ⎪= = + + + −⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

− −⎡ ⎤× = + + + −⎢ ⎥− − − − ⎣ ⎦

.(14) 

3.3. The joint total expected average cost per unit time 

Just-in-time (JIT) systems focus primarily on purchasing and manufacturing 
required items for immediate consumption. JIT requires a spirit of co-operation between 
the buyer and the vendor. Once the buyer and the vendor have built up a long-term 
strategic partnership, they can coordinate their production and inventory strategies and 
share information with each other to determine the best policy for both parties. The 
integrated inventory model is useful particularly for JIT inventory systems where the 
buyer and the vendor form a strategic alliance for profit sharing. 

This concept of joint optimization for the buyer and the vendor was initiated by 
Goyal [7] and reinforced by Banerjee [2] and Monahan [21]. Following their approach, 
we get the joint total expected average cost per unit time as follows: 

( , , , ) ( , , ) ( , )U U U
b vJEC q k L n EC q k L EC q n= +  

( ) ( )
( )

2

1 2

11

[( ) ] ( )
(1 )

1 ( 1)(1 )
1 2 2 2

1 [( ) ] 1

.
2 (1 ) 2

b
v

b b

bb

D S A F E X r C L
q n

h qD n ns h q
x P D P

h k L E X r h q

h q qh q D
x

π
γ

γ γγω
γ

σ β γ

γ γγ
γ

+

+

⎡ ⎤= + + + − +⎢ ⎥− ⎣ ⎦
⎡ − − ⎤⎛ ⎞+ + − + + −⎜ ⎟⎢ ⎥− ⎝ ⎠⎣ ⎦

⎡ ⎤+ + − − + −⎣ ⎦
− +

+ +
−

 (15) 

Then, in this one case, we should mainly discuss Equation (15) and find the 
optimal values of ( )q Q , ( )k r , L , and n  such that ( , , , )UJEC q k L n  in Equation (15) 
is minimum. Note that when the vendor promises that the arriving order contains no 
defective items and the shortages are fully backordered, Equation (15) can be reduced to 
Ouyang et al.’s model [23].  

As mentioned earlier, we make no assumption on the distribution other than 
saying that it has given finite first and second moments; i.e., the c.d.f. F of X  belongs to 
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the class Ω  of c.d.f.’s with finite mean DL  and standard deviation Lσ , so we cannot 
find the exact value of the expected demand shortage quantity at the end of each cycle, 

[( ) ]E X r +− . Therefore, the minmax distribution free procedure is used to find the least 
favorable c.d.f. F  in Ω  for each ( , , , )q r L n  and then minimize the joint total expected 
average cost per unit time over ( , , , )q k L n . More precisely, our problem is to solve: 

( , , , )
min max ( , , , )U

q k L n F
JEC q k L n

∈Ω
. (16) 

To this end, we need to use the following proposition as in [6]: 
Proposition. For any F ∈Ω  

2 21[( ) ] ( ) ( )
2

E X r L r DL r DLσ+ ⎡ ⎤− ≤ + − − −
⎣ ⎦

. (17) 

Moreover, the upper bound, equation (17), is tight. 
Since r DL k Lσ= + , and using Proposition, and considering the safety factor 

k  as a decision variable instead of the reorder point r , our problem is reduced to 
minimizing the cost function for the worst distribution 

( ) ( )

( )

2

2

2

1 2

11

( , , , )

( 1 ) ( )
(1 ) 2

1 ( 1)(1 )
1 2 2 2

11 1
2

.
2 (1 ) 2

U
W

b
v

b b

bb

JEC q k L n

D S LA F k k C L
q n

h qD n ns h q
x P D P

k kh L k h q

h q qh q D
x

πσ
γ

γ γ
γω

γ

σ β γ

γ γγ
γ

⎡ ⎤
= + + + + − +⎢ ⎥

− ⎣ ⎦
⎡ − − ⎤⎛ ⎞+ + − + + −⎜ ⎟⎢ ⎥− ⎝ ⎠⎣ ⎦
⎡ ⎤+ −

+ + − + −⎢ ⎥
⎢ ⎥⎣ ⎦

− +
+ +

−

 (18) 

First, for fixed ( , , )q k L , the effect of n  on the joint total expected average cost 
per unit time ( , , , )U

WJEC q k L n  will be examined. Let us take the second-order partial 
derivative of ( , , , )U

WJEC q k L n  with respect to n . Then we have 

2

2 3

( , , , ) 2 0.
(1 )

U
WJEC q k L n Ds

n q nγ
∂

= >
∂ −

 .(19) 

Therefore, ( , , , )U
WJEC q k L n  is convex in n , for fixed ( , , )q k L , and 

consequently the search for the optimal shipment number, *n , is reduced to finding a 
local minimum. 

Furthermore, for fixed integer ,n  taking the partial derivatives of 
( , , , )U

WJEC q k L n  with respect to ,q k  and ( )1,i iL L L −∈ , we get 
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( )

2
2

2

11
2

( , , , )
( 1 ) ( )

2(1 )

1 ( 1)(1 )
1 2 2 2

1
,

2 (1 ) 2

U
W

b
v

bb
b

JEC q k L n D S LA F k k C L
q nq

hD n nh
x P D P

hh Dh
x

πσ
γ

γ γ
γ

γγ
γ

γ

⎡ ⎤∂
= − + + + + − +⎢ ⎥

∂ − ⎣ ⎦
⎡ − − ⎤⎛ ⎞+ − + + −⎜ ⎟⎢ ⎥− ⎝ ⎠⎣ ⎦

−
+ + +
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 (20) 

( )

2

1

2

( , , , )
1

2 (1 ) 1

1 1
2 1

U
W

b

JEC q k L n D L k
k q k

h L k

k

πσ
γ

σ
β β

⎛ ⎞∂
= −⎜ ⎟⎜ ⎟∂ − +⎝ ⎠

⎡ ⎤⎛ ⎞
+ + + −⎢ ⎥⎜ ⎟⎜ ⎟+⎢ ⎥⎝ ⎠⎣ ⎦

 (21) 

and 

( )

2

2
1

( , , , ) ( 1 )
(1 ) 4

1 1 ( 1 )
2 .

2

U
W

i

b

JEC q k L n D k k c
L q L

h k k k

L

πσ
γ

σ β

⎡ ⎤∂ + −
= −⎢ ⎥

∂ − ⎢ ⎥⎣ ⎦
⎡ ⎤+ − + −⎢ ⎥⎣ ⎦+

 (22) 

However, for fixed ( , , )q k n , ( , , , )U
WJEC q k L n  is a concave function in 

[ ]1,i iL L L −∈ , because 

( )

32
2 2

2

3
2 2

1

( , , , ) ( 1 )
8 (1 )

1 1 1 ( 1 ) 0.
4 2

U
W

b

JEC q k L n D k k L
qL

h k k k L

πσ
γ

σ β

−

−

∂
= − + −

−∂

⎡ ⎤− + − + − <⎢ ⎥⎣ ⎦

 (23) 

Therefore, for fixed ( , , )q k n , the minimum joint total expected average cost per 
unit time will occur at the end points of the interval. On the other hand, it can be shown 
that for fixed n  and [ ]1,i iL L L −∈ , ( , , , )U

WJEC q k L n  is convex in both q  and k  (see 

Appendix for the proof). Therefore, for fixed n  and [ ]1,i iL L L −∈ , the minimum value of 

( , , , )U
WJEC q k L n  will occur at the point ( , )q k  which satisfies  

( , , , ) 0U
WJEC q k L n q∂ ∂ =  and ( , , , ) 0U

WJEC q k L n k∂ ∂ =  simultaneously. Solving 
these two equations, we obtain 
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1
2

2

2
1 2 1

2

( 1 ) ( )
2

( ) (1 )1 ( 1)(1 ) (1 )
2 2 2 2

b b b
v b

S LD A F k k C L
n

q
D h h hn nDh h

P D P x

πσ

γ γγ γ γ

⎧ ⎫⎛ ⎞
+ + + + − +⎪ ⎪⎜ ⎟⎜ ⎟⎪ ⎪⎝ ⎠= ⎨ ⎬

− −− −⎛ ⎞⎪ ⎪+ − + + + −⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 (24) 

and 

1

2
1

2 (1 )
1

(1 )(1 )1
b

b

h qk
D h qk

γ
π γ β

−
= −

+ − −+
. (25) 

We note that explicit general solutions for ( , )q k  are not possible because the 
evaluation for Equations (24) and (25) requires a knowledge of the value of the other. 
The optimal value of ( , )q k  can be obtained by adopting a similar graphical technique 
used in [12].  

Therefore, we establish the following iterative algorithm to find the optimal 
solution of ( , , , )q k L n . 
Algorithm.  

Step 1. Set 1n = . 
Step 2. For each iL , 0, 1, 2, ,i m= K , perform (i) to (iv). 
Start with 1 0ik =   

(i) Substituting 
1ik  into Equation (24) to evaluate 

1iq . 

(ii) Utilizing 
1iq  to determine 

2ik  from Equation (25). 

(iii) Set 
1 2i ik k=  and repeat (i) and (ii) until no change occurs in the values of 

iq  

and ik . 

(iv) Compute the corresponding ( , , , )U
W i i iJEC q k L n , 0, 1, 2, ,i m= K . 

Step3. Find 0,1, ,min ( , , , )U
i m W i i iJEC q k L n= K . 

If * * *
0,1, ,( , , , ) min ( , , , )U U

W n n n i m W i i iJEC q k L n JEC q k L n== K , then * * *( , , )n n nq k L  is the optimal 
solution for fixed .n  
Step 4. Set 1n n= + , and repeat Step 2 to Step 3 to get * * *( , , , )U

W n n nJEC q k L n . 
Step 5. If * * * * * *

1 1 1( , , , ) ( , , , 1)U U
W n n n W n n nJEC q k L n JEC q k L n− − −≤ − , then go to Step 4, otherwise 

go to Step 6. 
Step 6. Set * * * * * *

1 1 1( , , , ) ( , , , 1)U U
W n n n W n n nJEC q k L n JEC q k L n− − −= − . Then * * * *( , , , )q k L n  is the 

optimal solution and the optimal reorder point is * * * *r DL k Lσ= +  and the optimal 
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effective order quantity (i.e., the optimal quantity of non-defective or salable items) 
* * * * *[ ] (1 )Q n E q Y n q γ= − = −  follows.  

 

4. NUMERICAL EXAMPLE 

In order to illustrate the above solution procedure, let us consider an integrated 
inventory system with the following data: 600D = units/year, $200A = /order, 

$1500S = /setup, 2000P = units/year, $2vh = /unit/year, 1 $4bh = /unit/year, 2 $3bh = /unit
/year, $25F = /shipment, $4w = /unit, $0.5s = /unit, 175200x = unit/year, $30π = /unit, 

0 $50π = /unit, 7σ = units/week, the lead time has three components with data shown in 
Table 1, and for understanding the effects of various values of the defective rate, γ  , and 
the backorder rate, β , on the entire integrated inventory system, we consider that seven 
different values of γ  (ranging from 0.005 to 0.200) and four different values of β  (0.0, 
0.5, 0.8 and 1.0). Applying the proposed Algorithm procedure yields the results shown in 
Table 2. From the results in Table 2, it is interesting to observe that as we fix the 
backorder rate, β , an increase in the value of the percentage of defective items, γ , 
results in an increase in all the buyer’s expected average annual total cost, the vendor’s 
expected average annual total cost and the joint expected average annual total cost. 
Therefore, the vendor should make every effort to reduce the rate of defective items so as 
to decrease his/her own cost and the cost of the entire supply chain system. In addition, 
increasing the value γ  will result in an increase in the reorder point and in the number of 
shipments per production run from the vendor to the buyer. On the other hand, we fix the 
value of the percentage of defective items, γ , as the backorder rate, β , increases, both 
the buyer’s expected average annual total cost and the joint expected average annual total 
cost decrease, and the vendor’s expected average annual total cost increases. It is also 
interesting to observe that decreasing the value β  will result in an increase in the reorder 
point and the shipping quantity from the vendor to the buyer per shipment.  

 

Table 1: Lead time data 

Lead time              
component, i  

Normal duration, ib  
(days) 

Minimum duration, ia  
(days) 

Unit crashing cost, ic  
($/day) 

1 
2 
3 

20 
20 
16 

6 
6 
9 

0.4 
1.2 
5.0 
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Table 2: Summary of the optimal solution ( *L  in weeks) 

β  *q  *r  *L  *n  * * *
, ( , , )U

b WEC q r L  * *( , )U
vEC q n  * * * *( , , , )U

WJEC q r L n  
0 .0 0 5γ =  
0.0 
0.5 
0.8 
1.0 
0 .0 1 5γ =  
0.0 
0.5 
0.8 
1.0 
0 .0 2 5γ =  
0.0 
0.5 
0.8 
1.0 
0 .0 3 5γ =  
0.0 
0.5 
0.8 
1.0 
0 .0 4 5γ =  
0.0 
0.5 
0.8 
1.0 
0 .1 0 0γ =  
0.0 
0.5 
0.8 
1.0 
0 .2 0 0γ =  
0.0 
0.5 
0.8 
1.0 

 
371 
367 
365 
363 

 
373 
369 
366 
364 

 
374 
370 
368 
366 

 
376 
372 
369 
367 

 
377 
373 
371 
369 

 
386 
323 
321 
319 

 
345 
342 
339 
337 

 
85 
78 
72 
68 
 

85 
78 
72 
68 
 

85 
78 
72 
68 
 

85 
78 
72 
68 
 

85 
78 
72 
68 
 

86 
82 
76 
71 
 

91 
83 
77 
72 

 
4 
4 
4 
4 
 
4 
4 
4 
4 
 
4 
4 
4 
4 
 
4 
4 
4 
4 
 
4 
4 
4 
4 
 
4 
4 
4 
4 
 
4 
4 
4 
4 

 
3 
3 
3 
3 
 
3 
3 
3 
3 
 
3 
3 
3 
3 
 
3 
3 
3 
3 
 
3 
3 
3 
3 
 
3 
4 
4 
4 
 
4 
4 
4 
4 

 
1766.85 
1707.32 
1664.09 
1629.89 

 
1780.04 
1720.31 
1676.95 
1642.65 

 
1793.43 
1733.50 
1690.00 
1655.60 

 
1807.00 
1746.89 
1703.25 
1668.74 

 
1820.79 
1760.47 
1716.69 
1682.08 

 
1900.51 
1817.93 
1771.44 
1734.76 

 
2041.06 
1974.81 
1926.74 
1888.86 

 
1454.81 
1456.69 
1458.07 
1459.19 

 
1485.67 
1487.58 
1488.98 
1490.12 

 
1517.11 
1519.06 
1520.48 
1521.63 

 
1549.14 
1551.13 
1552.57 
1553.75 

 
1581.81 
1583.82 
1585.30 
1586.48 

 
1773.37 
1794.30 
1794.49 
1794.68 

 
2191.43 
2191.90 
2192.34 
2192.73 

 
3221.66 
3164.01 
3122.16 
3089.08 

 
3265.71 
3207.89 
3165.93 
3132.77 

 
3310.53 
3252.56 
3210.48 
3177.23 

 
3356.14 
3298.02 
3255.82 
3222.49 

 
3402.60 
3344.29 
3301.99 
3268.56 

 
3673.88 
3612.23 
3565.93 
3529.44 

 
4232.49 
4166.71 
4119.08 
4081.59 
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On the other hand, for comparison purposes, we present the following analysis. 
If the buyer and the vendor do not choose to cooperate with each other, they will 
determine their own optimal policy separately. First, the buyer makes his/her own 
decision without any intention to cooperate with the vendor; he/she discusses the total 
cost per unit time of the Equation (11). Our problem is to minimize the cost function for 
the worst distribution 

( ) ( )

( ) ( )

2 1
,

1 2
1

2
2

( , , ) ( 1 ) ( )
(1 ) 2 2 (1 )

1 1 ( 1 )
2 2

1 .
2 1 1

U b
b W

b
b

b
b

h q DD LEC q k L A F k k C L
q x

h q q
h L k k k

h q D sDh q
x

γπσ
γ γ

γ γ
σ β

γ
γ

γ γ

⎡ ⎤
= + + + − + +⎢ ⎥

− −⎣ ⎦
− + ⎡ ⎤+ + + − + −⎢ ⎥⎣ ⎦

+ − − +
− −

 (26) 

By analogous arguments as in Appendix, it can be readily shown that for fixed 
q  and k , , ( , , )U

b WEC q k L  is a concave function in [ ]1,i iL L L −∈ . Thus, the minimum 

value of , ( , , )U
b WEC q k L  will occur at the end points of the interval [ ]1,i iL L − . 

Furthermore, we can show that , ( , , )U
b WEC q k L  is convex in both q  and k . Thus for fixed 

[ ]1,i iL L L −∈ , the optimal solutions of q  and k  (denoted by * *( , )b bq k ) which minimize 
the expected average total cost per unit time for the buyer will satisfy 

* *, ( , ) ( , )
( , , ) / | 0

b b

U
b W q k q k

EC q k L q
=

∂ ∂ = and * *, ( , ) ( , )
( , , ) / | 0

b b

U
b W q k q k

EC q k L k
=

∂ ∂ =  

simultaneously. Solving these equations, we obtain  
1

2
*2 *

*
2

1 2 1
2

( 1 ) ( )
2

( ) (1 ) (1 )
2 2

b b

b
b b b

b

LD A F k k C L
q

D h h h h
x

πσ

γ γ
γ γ

⎧ ⎫⎛ ⎞
+ + + − +⎪ ⎪⎜ ⎟⎜ ⎟⎪ ⎪⎝ ⎠= ⎨ ⎬

− −⎪ ⎪+ + −
⎪ ⎪
⎩ ⎭

 (27) 

and 
* *

1
**2

1

2 (1 )
1

(1 )(1 )1
b b b

b bb

k h q
D h qk

γ
π γ β

−
= −

+ − −+
. .(28) 

Following the analogous method of the Step 2 of Algorithm, we can find 
* *( , )b bq k  for each iL , 0, 1, 2, ,i m= K . 

Then set * * *
, 0,1, , ,( , , ) min ( , , )U U

b W b b b i m b W i i iEC q k L EC q k L== K . Thus * * *( , , )b b bq k L  is the 
optimal solution for the buyer. On the other hand, the expected average total cost per unit 
time for the vendor is Equation (14). Since the best production quantity is a positive 
integer multiple of the buyer’s ordering quantity, we compute Equation (14) by using 
buyer’s optimal ordering quantity and set 1, 2, 3, .n = K  We can find the best choice of 
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n  for the vendor and * *( , )U
v b vEC q n . Using the data, as stated above, the optimal number 

of vendor product in one production run is * 4vn = , and other results are presented in 
Table 3. From the results shown in Tables 2 and 3, it indicates that the total cost and the 
vendor’s cost will be lower and the buyer’s will be higher for integrated models than for 
those without integration. This leads to an important issue of the vendor’s compensation 
for the loss of the buyer in integrated models. Therefore, they should cooperate and 
jointly determine the best solution, and the total savings can and should be shared in 
some equitable manner. Goyal [7] suggested a judicious method for allocating costs that 
the total annual cost * * * *( , , , )U

WJEC q r L n  should be allocated to the vendor and the buyer 
as follows.  

Cost to the buyer * * * *( , , , )U
WJEC q r L nξ= ⋅ , 

Cost to the vendor * * * *(1 ) ( , , , )U
WJEC q r L nξ= − ⋅ , 

where 
* * *

,
* * * * *

,

( , , )
( , , ) ( , )

U
b W b b b

U U
b W b b b v b v

EC q r L
EC q r L EC q n

ξ =
+

 ; *,bq *
br and *

bL  respectively denote 

the buyer’s optimal ordering quantity, optimal reorder point and optimal lead time, and 
*
vn  denotes the vendor’s optimal number of lots delivered to the buyer. The results of 

allocated total cost are also shown in Table 3.  
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Table 3: Summary of the comparison between the policies 

 Model    Type  

 Independent   Integrated  β  
Buyer’s 

cost 
Vendor’s 

cost 
Total 
cost 

 Allocated 
buyer’s 

cost 

Allocated 
vendor’s 

cost 

Total 
cost 

aR  

0 .0 0 5γ =  
0.0 
0.5 
0.8 
1.0 
0 .0 1 5γ =  
0.0 
0.5 
0.8 
1.0 
0 .0 2 5γ =  
0.0 
0.5 
0.8 
1.0 
0 .0 3 5γ =  
0.0 
0.5 
0.8 
1.0 
0 .0 4 5γ =  
0.0 
0.5 
0.8 
1.0 
0 .1 0 0γ =  
0.0 
0.5 
0.8 
1.0 
0 .2 0 0γ =  
0.0 
0.5 
0.8 
1.0 

 
1753.10 
1691.18 
1646.07 
1610.36 

 
1765.84 
1703.69 
1658.42 
1622.58 

 
1778.76 
1716.38 
1670.94 
1634.98 

 
1791.86 
1729.25 
1683.65 
1647.56 

 
1805.16 
1742.31 
1696.54 
1660.33 

 
1881.96 
1817.80 
1771.08 
1734.15 

 
2040.54 
1973.74 
1925.15 
1886.79 

 
1485.65 
1484.67 
1484.52 
1484.71 

 
1515.47 
1514.65 
1514.60 
1514.88 

 
1545.88 
1545.20 
1545.27 
1545.63 

 
1576.88 
1576.36 
1576.53 
1576.98 

 
1608.49 
1608.13 
1608.41 
1608.94 

 
1794.20 
1794.73 
1795.65 
1796.64 

 
2235.69 
2195.23 
2197.38 
2199.28 

 
3238.75 
3175.85 
3130.59 
3095.07 

 
3281.31 
3218.34 
3173.02 
3137.46 

 
3324.64 
3261.58 
3216.21 
3180.61 

 
3368.74 
3305.61 
3260.18 
3224.54 

 
3413.65 
3350.44 
3304.95 
3269.27 

 
3676.16 
3612.53 
3566.73 
3530.79 

 
4276.23 
4168.97 
4122.53 
4086.07 

 

 
1743.85 
1684.87 
1641.64 
1607.24 

 
1757.45 
1698.16 
1654.71 
1620.16 

 
1771.21 
1711.63 
1667.97 
1633.24 

 
1785.16 
1725.28 
1681.40 
1646.52 

 
1799.32 
1739.11 
1695.02 
1659.97 

 
1880.79 
1817.64 
1770.68 
1733.49 

 
2019.67 
1972.67 
1923.54 
1884.72 

 
1477.81 
1479.13 
1480.52 
1481.84 

 
1508.26 
1509.73 
1511.22 
1512.61 

 
1539.32 
1540.93 
1542.51 
1543.99 

 
1570.98 
1572.74 
1574.42 
1575.97 

 
1603.28 
1605.18 
1606.97 
1608.59 

 
1793.09 
1794.59 
1795.25 
1795.95 

 
2212.82 
2194.04 
2195.54 
2196.87 

 
3221.66 
3164.00 
3122.16 
3089.08 

 
3265.71 
3207.89 
3165.93 
3132.77 

 
3310.53 
3252.56 
3210.48 
3177.23 

 
3356.14 
3298.02 
3255.82 
3222.49 

 
3402.60 
3344.29 
3301.99 
3268.56 

 
3673.88 
3612.23 
3565.93 
3529.44 

 
4232.49 
4166.71 
4119.08 
4081.59 

 
100.531 
100.374 
100.270 
100.194 

 
100.478 
100.326 
100.224 
100.150 

 
100.426 
100.277 
100.178 
100.106 

 
100.376 
100.230 
100.134 
100.064 

 
100.325 
100.184 
100.090 
100.022 

 
100.062 
100.008 
100.023 
100.038 

 
101.034 
100.054 
100.084 
100.110 

a R  denotes the ratio of the total cost of the best independent policy to the total 
cost of the best integrated policy expressed as a percentage. 
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5. CONCLUDING REMARKS 

The purpose of this paper is to investigate an integrated vendor-buyer inventory 
policy for a continuous review model including a random number of defective items in 
buyer’s arrival order lot with a mixture of backorders and lost sales when only the mean 
and the variance of the distribution of the lead time demand are known. Analyzing the 
joint total expected cost function, we develop an algorithmic procedure to determine the 
optimal order quantity, reorder point, lead time and the number of lots delivered in one 
production run. The effects of parameters are also studied for the decision-making 
references. Moreover, the results of the numerical example indicate that both parties can 
benefit on condition that the buyer and the vendor make their decisions cooperatively. In 
addition, the total cost of the entire supply chain system decreases when the backorder 
rate increases and the defective rate decreases. Therefore, the vendor should endeavor to 
enhance the production quality to reduce defective rate so as to decrease the total cost of 
the entire supply chain system.  

Regarding some future research, we propose the adoption of the random sub-lot 
sampled inspection policy to inspecting the selected items. In order to show the 
uncertainties, we could extend the present model so to apply stochastic demand and 
production rate in each member of the supply chain. 
Appendix: The proof of ( , , , )U

WJEC q k L n  is convex in ( , )q k  for fixed n  and 

[ ]1,i iL L L −∈ . 

For fixed n  and [ ]1,i iL L L −∈ , we first obtain the Hessian matrix H as follows. 

H 

2 2

2

2 2

2

( , , , ) ( , , , )

( , , , ) ( , , , )

U U
W W

U U
W W

JEC q k L n JEC q k L n
q kq

JEC q k L n JEC q k L n
k q k

⎡ ⎤∂ ∂
⎢ ⎥∂ ∂∂⎢ ⎥=
⎢ ⎥∂ ∂
⎢ ⎥

∂ ∂ ∂⎢ ⎥⎣ ⎦

.  

Then we proceed by evaluating the principal minor of H. 
The first principal minor of H is 011 >H , since 

( )

2

2 3

2

( , , , ) 2
(1 )

1 ( ) 0
2

U
WJEC q k L n D

q q

S LA F k k C L
n

γ

πσ

∂
=

∂ −

⎡ ⎤
× + + + + − + >⎢ ⎥
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and 
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Next, computing the second principal minor of H, we get 
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and it follows from Equations (A.1)-(A.3) that 
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Let 3 2 2 2( ) 2 2 1 1G k k k k k= − + + + . Since ( )221 1 2k k k+ < + , 
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thus ( )G k  is a decreasing function of k . Furthermore, (0) 1G =  and it follows from 
L’Hospital’s rule that 
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Consequently, ( ) 0, [0, )G k k> ∀ ∈ ∞  and so 22 0H > . Therefore, it is clearly 
that the Hessian matrix H is positive definite at point ( , )q k .  

 
Acknowledgements: The author is grateful to the Editors in Chief and anonymous 
referees for their valuable comments and suggestions. 

 
REFERENCES 

[1] Annadurai, K., and Uthayakumar, R., “Controlling setup cost (Q,r,L) inventory model with 
defective items”, Applied Mathematical Modelling, 34 (2010) 1418-1427. 

[2] Banerjee, A., “A joint economic-lot-size model for purchaser and vendor”, Decision Sciences, 
17 (1986) 292-311. 

[3] Ben-Daya, M., and Raouf, A., “Inventory models involving lead time as a decision variable”, 
Journal of the Operational Research Society, 45(5) (1994) 579-582. 

[4] Bhowmick, J., and Samanta, G.P., “Optimal inventory policies for imperfect inventory with 
price dependent stochastic demand and partial backlogged shortages”, Yugoslav Journal of 
Operations Research, 2012, doi: 10.2298/YJOR101011007B. 

[5] Eroglu, A., and Ozdemir, G., “An economic order quantity model with defective items and 
shortages”, International Journal of Production Economics, 106 (2007) 544-549. 

[6] Gallego, G., and Moon, I., “The distribution free newsboy problem: Review and extensions”, 
Journal of the Operational Research Society, 44(8) (1993) 825-834. 

[7] Goyal, S.K., “An integrated inventory model for a single supplier-single customer problem”, 
International Journal of Production Research, 15(1) (1976) 107-111. 

[8] Goyal, S.K., “A joint economic-lot-size model for purchaser and vendor: A comment”, 
Decision Sciences, 19(1) (1988) 236-241. 

[9] Goyal, S.K., and Gupta, Y.P., “Integrated inventory models: The buyer-vendor coordination”, 
European Journal of Operational Research, 41 (1989) 261-269. 

[10] Goyal, S.K., and Nebebe, F., “Determination of economic production-shipment policy for a 
single-vendor single-buyer system”, European Journal of Operational Research, 121 (2000) 
175-178. 

[11] Ha, D., and Kim, S.L., “Implementation of JIT purchasing: An integrated approach”, 
Production Planning & Control, 8(2) (1997) 152-157. 

[12] Hadley, G., and Whitin, T.M., Analysis of Inventory Systems, Prentice-Hall, Englewood Cliffs, 
New Jersey, 1963. 



 H. J. Lin / An Integrated Supply Chain Inventory Model 108 

[13] Hill, R.M., “The single-vendor single-buyer integrated production-inventory model with a 
generalized policy”, European Journal of Operational Research, 97 (1997) 493-499. 

[14] Hill, R.M., “The optimal production and shipment policy for the single-vendor single-buyer 
integrated production-inventory problem”, International Journal of Production Research, 
37(11) (1999) 2463-2475. 

[15] Huang, C.K., “An integrated vendor-buyer cooperative inventory model for items with 
imperfect quality”, Production Planning & Control, 13 (4) (2002) 355-361. 

[16] Huang, C.K., “An optimal policy for a single-vendor single-buyer integrated production-
inventory problem with process unreliability consideration”, International Journal of 
Production Economics, 91(1) (2004) 91-98. 

[17] Jaber, M.Y., Goyal, S.K., and Imran, M., “Economic production quantity model for items with 
imperfect quality subject to learning effects”, International Journal of Production Economics, 
115 (2008) 143-150.   

[18] Joglekar, P.N., “Comments on A quantity discount pricing model to increase vendor profits”, 
Management Science, 34(11) (1988) 1391-1398. 

[19] Liao, C.J., and Shyu, C.H., “An analytical determination of lead time with normal demand”, 
International Journal of Operations & Production Management, 11(9) (1991) 72-78. 

[20] Lu, L., “A one-vendor multi-buyer integrated inventory model”, European Journal of 
Operational Research, 81 (1995) 312-323. 

[21] Monahan, J.P., “A quantity discount pricing model to increase vendor profits”, Management 
Science, 30(6) (1984) 720-726.  

[22] Moon, I., and Choi, S., “A note on lead time and distributional assumptions in continuous 
review inventory models”, Computers & Operations Research, 25(11) (1998) 1007-1012. 

[23] Ouyang, L.Y., Wu, K.S., and Ho, C.H., “Integrated vendor–buyer cooperative models with 
stochastic demand in controllable lead time”, International Journal of Production Economics, 
92 (2004) 255–266. 

[24] Ouyang, L.Y., Wu, K.S., and Ho, C.H., “Analysis of optimal vendor-buyer integrated 
inventory policy involving defective items”, International Journal of Advanced 
Manufacturing Technology, 29 (2006) 1232-1245. 

[25] Paknejad, M.J., Nasri, F., and Affisco, J.F., “Defective units in a continuous review ( , )s Q  
system”, International Journal of Production Research, 33 (1995) 2767-2777. 

[26] Pal, B., Sana, S.S., and Chaudhuri, K., “Maximising profits for an EPQ model with unreliable 
machine and rework of random defective items”, International Journal of Systems Science, 
2012, doi: 10.1080/00207721.2011.617896. 

[27] Pan, J. C.-H., and Yang, J.S., “A study of an integrated inventory with controllable lead time”, 
International Journal of Production Research, 40(5) (2002) 1263-1273. 

[28] Panda S., “An EOQ model with stock dependent demand and imperfect quality items”, 
Yugoslav Journal of Operations Research, 20(2) (2010) 237-247.  

[29] Papachristos, S., Konstantaras, I., “Economic ordering quantity models for items with 
imperfect quality”, International Journal of Production Economics, 100 (1) (2006) 148-154. 

[30] Porteus, E.L., “Optimal lot sizing, process quality improvement and setup cost reduction”, 
Operations Research, 34(1) (1986) 137-144. 

[31] Rosenblatt, M.J., and Lee, H.L., “Economic production cycles with imperfect production 
processes”, IIE Transactions, 18(1) (1986) 48-55. 

[32] Roy, M.S., Sana, S.S., and Chaudhuri, K., “An optimal shipment strategy for imperfect items 
in a stock-out situation”, Mathematical and Computer Modelling, 54(9-10) (2011) 2528-2543. 

[33] Roy, M.S., Sana, S.S., and Chaudhuri, K., “An economic order quantity model of imperfect 
quality items with partial backlogging”, International Journal of Systems Science, 42(8) 
(2011) 1409-1419. 



 H. J. Lin / An Integrated Supply Chain Inventory Model 109 

[34] Roy, M.S., Sana, S.S., and Chaudhuri, K., “An integrated producer–buyer relationship in the 
environment of EMQ and JIT production systems”, International Journal of Production 
Research, 2012, doi: 10.1080/00207543.2011.650866. 

[35] Salameh, M.K., and Jaber, M.Y., “Economic production quantity model for items with 
imperfect quality”, International Journal of Production Economics, 64(1) (2000) 59-64. 

[36] Sana, S.S., “Preventive maintenance and optimal buffer inventory for products sold with 
warranty in an imperfect production system”, International Journal of Production Research, 
2012, doi: 10.1080/00207543.2011.623838. 

[37] Sana, S.S., “Price sensitive demand with random sales price – a newsboy problem”, 
International Journal of Systems Science, 43(3) (2012) 491-498. 

[38] Sana, S.S., “A collaborating inventory model in a supply chain”, Economic Modelling, 29(5) 
(2012) 2016-2023. 

[39] Sana, S.S., “A production-inventory model of imperfect quality products in a three-layer 
supply chain”, Decision Support Systems, 50(2) (2011) 539-547. 

[40] Sana, S.S., “An economic production lot size model in an imperfect production system”, 
European Journal of Operational Research, 201 (2010) 158-170. 

[41] Sana, S.S., “Optimal selling price and lotsize with time varying deterioration and partial 
backlogging”, Applied Mathematics and Computation, 217(1) (2010) 185-194 

[42] Sana, S.S., “The stochastic EOQ model with random sales price”, Applied Mathematics and 
Computation, 218(2) (2011) 239-248. 

[43] Scarf, H., “A min-max solution of an inventory problem”, in: Arrow K, Karlin S, Scarf H 
(eds), Studies in the Mathematical Theory of Inventory and Production. Stanford University 
Press, Stanford, CA, 1958, 201-209. 

[44] Wee, H.H., Yu, J., and Chen, M.C., “Optimal inventory model for items with imperfect 
quality and shortage backordering”, Omega, 35 (2007) 7-11. 

[45] Wu, K.S., and Ouyang, L.Y., (Q,r,L) Inventory model with defective items, Computers & 
Industrial Engineering, 39 (2001) 173-185. 

[46] Yoo, S.H., Kim, D., and Park, M.S., “Economic production quantity model with imperfect-
quality items, two-way imperfect inspection and sales return”, International Journal of 
Production Economics, 121 (2009) 255-265. 

 


