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Abstract: The maximum entropy principle has been earlier used to derive the Bose 
Einstein(B.E.), Fermi Dirac(F.D.) & Intermediate Statistics(I.S.) distribution of statistical 
mechanics. The central idea of these distributions is to predict the distribution of the 
microstates, which are the particle of the system, on the basis of the knowledge of some 
macroscopic data. The latter information is specified in the form of some simple moment 
constraints. One distribution differs from the other in the way in which the constraints are 
specified.  In the present paper, we have derived some new distributions similar to B.E., 
F.D. distributions of statistical mechanics by using maximum entropy principle. Some 
proofs of B.E. & F.D. distributions are shown, and at the end some new results are 
discussed. 
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1. INTRODUCTION 

The term “entropy” was introduced by Clausius in nineteenth-century 
thermodynamics, and is the subject of second law of thermodynamics, which states that 
in an isolated thermodynamic system, entropy will either remain constant or increase 
towards its maximum but cannot decrease. As we know, an isolated system is the one 
which is closed to inputs of both matter and energy; so in an isolated system, the system 
will gradually become more and more disordered, until it reaches maximum entropy. 
This means that since no new heat energy can be added, the system can never become 
hotter, but can only maintain the same temperature, or become colder. As it loses heat 
over time, its entropy increases, until finally it reaches maximum. This state of maximum 
entropy is called thermodynamic equilibrium. Such thermodynamic system are 
“irreversible system” where heat cannot flow from colder to hotter parts of the system, 
but only from hotter to colder areas. Thermodynamic entropy is denoted by the symbol
S , and the formula for change in entropy is: 

dQdS T= , where S is entropy, Q  is heat, and T is temperature of the system. The 

difference in two entropy states 1 2,S S  is: 
2

2 1
1

dQS S
T

− = ∫  (Irreversible process), when the system is in thermodynamic equilibrium 

then 0dS = . 
In physics, work and entropy are inversely related. The principal way to 

decrease entropy is to do work through the expenditure of free energy. If free energy is 
available and expended to do work then, the system becomes more orderly and entropy 
decreases. But if all available energy has been expended, hence no more work is 
affordable; entropy will either remain constant or increase. 
 
Boltzmann’s Entropy 

In addition to thermodynamic (or heat-change) entropy, physicists also study 
entropy statistically. The statistical or probabilistic study of entropy is presented in 
Boltzmann’s law, .Boltzmann’s equation is somewhat different from the original 
Clausius (thermodynamic) formulation of entropy. First, the Boltzmann formulation is 
structured in terms of probabilities, while the thermodynamic formulation does not entail 
the calculation of probabilities. The thermodynamic formulation can be characterized as a 
mathematical formulation, while the Boltzmann formulation is statistical. Second, the 
Boltzmann equation yields a value of entropy (S) while the thermodynamic formulation 
yields only a value for the change in entropy (dS). Third, there is a shift in content, as the 
Boltzmann equation was developed for research on gas molecules, rather than 
thermodynamics. Fourth, by incorporating probabilities, the Boltzmann equation focuses 
on micro-states, and thus explicitly introduces the question of the relationship between 
macro-states and microstates.  

Boltzmann investigated such micro-states and defined entropy in a new way, 
such that the macroscopic maximum- entropy state corresponded to a thermodynamic 
configuration, which could be realized by the maximum number of different micro-states. 
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He noticed that entropy of a system can be considered as a measure of the disorder in the 
system, and if a system has many degrees of freedom, the number measuring the degree 
of disorder also measures the uncertainty, in a probabilistic sense, of the particular micro-
states. 

We consider a system with N micro-states ( 1,2,...., )iN i n= . Then the statistical  

Disorder is given by [Carnop, 1977] 
1 2

!
! !..... !n

NW N N N= .Let us now take an 

approximate value of W for large !N  Using Stirling’s approximation, we have 

1
ln

n

i i
i

S K p p
=

= − ∑ , where i
i

N
p

N
= is the probability of the occurrence of micro states i ; 

S is the entropy and K is a positive constant called Boltzmann’s constant. Boltzmann 
was the first to emphasize the probabilistic meaning of entropy, and the probabilistic 
nature of thermodynamics. 
 

Entropy in Information Theory 

Unlike the first two entropy approaches (thermodynamic entropy and 
Boltzmann’s entropy), the third major form of entropy was not developed within the field 
of physics but in a new field known as information theory (also known as communication 
theory). A fundamental step in using entropy in the new contexts unrelated to 
thermodynamics was provided by Shannon (1948), who realized that entropy could be 
used to measure types of disorder other than those of thermodynamic micro-states. 
Shannon was interested in information theory, particularly the ways information can be 
conveyed via a message. This led him to examine probability distributions in a very 
general sense, and to find some ways to measure the level of uncertainty in different 
distributions. For example, suppose that probability distribution for the outcome of a 
coin-toss experiment is P(H) = 0.999 and P(T ) = 0.001. One is likely to notice that there 
is much more "certainty" than "uncertainty" about the outcome of this experiment and the 
probability distribution, too. If , on the other hand, the probability distribution governing 
that same experiment were P(H) = 0.5 and P(T) = 0.5, then there is much less "certainty" 
and much more "uncertainty", when compared with the previous distribution. But how to  
quantify this uncertainty? Is there any algebraic function that measures the amount of 
uncertainty in any probabilistic distribution, in terms of the individual probabilities? 

From these and other types of simple examples, Shannon was able to devise a 
set of criteria that any measure of uncertainty may satisfy. He then tried to find an 
algebraic form which could satisfy his criteria, and discovered that there was only one 
formula that fitted. The amount of uncertainty in any discrete probability distribution 

where , 1,2,..... ,ip i n=  is the probability of an event, is proportional to the
1

ln
n

i i
i

p p
=

−∑ . 

This is identical to the previous entropy relation if the constant of probability is 
taken as Boltzmann constant K. Thus, Shannon showed that entropy that measures the 
amount of disorder in a thermodynamic system, also measures the amount of uncertainty 
in any probability distribution. Let us now give the formal definition of Shannon 
Entropy: Consider a random experiment 1 2( , ,..., )np p pα = whose possible outcomes 
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have probabilities , 1, 2,...,ip i n= , which are known. Can we predict the outcome 
obtained? As a matter of fact, the degree of difficulty of this prediction will vary with the 
definition of α and is related to the uncertainty included inα . So the question is then the 
following: can we measure the amount of uncertainty? We shall denote such uncertainty 
measure by 1 2( ) ( , ,..., )nH H p p pα = . The most common, as well as the most useful 
measure of uncertainty is the Shannon's informational entropy (which should satisfy 
some basic requirements), defined as follows:  

 
Definition 1: Let 1 2( , ,..., )np p p  be the probability of occurrence of the events 

1 2, ,......, nE E E  associated with a random experiment. The Shannon Entropy probability 
distribution 1 2( , ,..., )np p p  of the random experiment systemα  is defined by 

1 2( ) ( , ,..., )nH H p p pα = =
1

ln
n

i i
i

K p p
=

− ∑ . 

Where 0ln0=0, and K is the unit of measurement of entropy. The above 
definition is generalized straight forwardly from the definition of entropy of a random 
variable.  
 
Definition 2: Let X ∈R be discrete random variable which takes a value x 
(i=1,2,..............,n) with probability , 1,2,...,ip i n= ,  then the entropy H(X) of X is defined 

by the expression ( )H X =
1

ln
n

i i
i

K p p
=

− ∑ . 

Examination of H reveals that the measure varies from a minimum value of zero 
to a maximum value of log K (where K is the number of categories). If a sample has N 
objects (such as persons), the minimum value of zero is attained when all N objects 
occupy a single category. The maximum value of H (Log K) is attained when all N 
objects are evenly distributed among the K categories, so that each category contains 
exactly 1/N of the total sample. There are a few points to note about the H measure, and 
its comparisons with Boltzmann’s entropy. The maximum value of H is not a fixed value, 
but is dependent upon the number of categories, K. What degree of problem it makes, 
depends upon the particular variable or subject matter to which K is applied. For 
example, if one wishes to compute H for social class, then there may be disagreement, for 
example, about whether the social class comprises three categories (lower class, middle 
class, and upper class), or five categories (lower class, lower-middle class, middle class 
upper-middle class, and upper class). While minimum H is fixed at zero in both cases, 
maximum H varies, depending on the number of categories chosen, be them three or five. 
Another point to note when comparing H with Boltzmann’s equation is that the formula 
for H specifically includes both population or sample size (N) and category size (K), and 
that both of these are used in computing the probabilities ip .In contrast, Boltzmann’s 
equation does not identify the population size and categories, instead, it is written in 
terms of probability of an event occurring all the ways possible. These represent two 
different ways of approaching the macro-state/microstate problem. 

A further issue with H is the question of how it should be interpreted. Consider 
the application of H to a situation where K = 5, as in the case of the social class given 
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above. Here, H can vary from a minimum of zero (when everyone is in the same income 
category) to a maximum of log K (when each of the K categories contains exactly 1/K of 
the sample). Statistically, this maximum state is the “most probable state,” or most likely 
state. It is also the least predictable state and thus, the one that exhibits the most 
uncertainty or disorder. 

That is, if one wishes to predict the social class of an individual, the prediction 
is certain for the case where H equals zero, as all persons have the same income. Thus, 
when H is a minimum, there is no uncertainty, and the social class is perfectly 
predictable. However, when H is maximum, then the probability of assignment to each 
category is basically random, resulting in an even distribution of individuals across class 
categories. This means that uncertainty is maximized, and it is difficult to predict a 
person’s social class. Since H was developed within information theory, it is often 
referred to as a measure of information. The main idea here is that minimum H yields 
minimum uncertainty (high information), while maximum H represents maximum 
uncertainty (low information).Thus, by calling H information, scholars must face the 
uncomfortable anomaly or irony that minimum information yields maximum certainty, 
and that maximum information yields minimum certainty. If one is comfortable with an 
equation of information and uncertainty, then H can be termed as a measure of 
information. If one is more comfortable with H as a direct measure of uncertainty or 
disorder (it clearly is), then it is better to term H a measure of entropy. In contrasting H 
with Clausius’ thermodynamic entropy and Boltzmann’s entropy, several differences are 
apparent. Thermodynamic entropy is defined solely in terms of heat and temperature, as 
shown earlier. In contrast, Boltzmann’s entropy is written in terms of the behavior of gas 
molecules. H is a more open or generic measure, which is more content free, and can be 
applied to any set of discrete categories for which data exists. Shannon’s H is strikingly 
similar to Boltzmann’s entropy in terms of its equation. Since Boltzmann’s entropy and 
Shannon’s H are statistical formulations presented in terms of probabilities, and since the 
formulas are so similar, many statisticians may have little difficulty making the transition 
from Boltzmann’s entropy to Shannon’s H (or vice versa). However, students of 
Shannon’s H may have more difficult time understanding thermodynamic entropy, and 
resolving differences between thermodynamic entropy and Shannon’s H. Similarly, 
students whose first introduction to entropy was in thermodynamics, may not be sure that 
Boltzmann’s entropy is “real” entropy, but may accept it as a valid physics entity. 
However, they may consider this statistical computation to be less rigorous than the 
original thermodynamic entropy. These scholars may have real difficulty in accepting 
Shannon’s H as an entropy measure. They may consider it a valid information- theory 
measure, or entropy analog, but may not consider it a valid entropy measure to the same 
degree that they would accept thermodynamic entropy or even Boltzmann’s entropy.  

The maximum entropy principal of Jaynes [7] has been frequently used to derive 
the distribution of statistical mechanics by maximizing the entropy of the system subject 
to some given constraints. 

The Maxwell-Boltzman distribution is obtained when there is only one 
constraint on system which prescribes the expected energy per particle of the system by 
J.N. kapur[2].  

Bose-Einstein (B.E.) distribution, Fermi-Dirac (F.D.) distribution, and 
Intermediate statistics (I.S.) distributions are obtained by maximizing the entropy subject 
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to two constraints by Forte & Sempi [1], by J.N.Kapur [2,3] and Kapur & Kesavan [4,5] 
which are 

 
(i) The expected number of particle of the system is prescribed, 
(ii) The expected total energy of the system is prescribed, respectively. 

 
Though these distributions arose in the first instance in statistical mechanics, 

they are widely applicable in urban & regional planning, transportation studies 
(S.K.Mazumder [6]), finance, banking, and economics (Kapur [2], Kapur Kesavan [4,5]).

 
In the present paper, we obtain such distributions when only one constraint is 

given for B.E. & F.D. distribution i.e. we have derived some new distributions, relaxing 
the assumptions usually used when B.E. and F.D. distributions are derived. 
 

2. DISCUSSION 

Let 1 2, ,....., np p p  be the probabilities of a particle having energy levels 1,ε 2 ,ε

…., nε , respectively, and let the expected value of energy be prescribed as ε , and then to 
get the maximum entropy probability distribution(MEPD) of Maxwell-Boltzmann,  we 
maximize the  Shannon’s measure of entropy  

1
ln

n

i i
i

p p
=

−∑  (1) 

Subject to 

1
1

n

i
i

p
=

=∑   (2) 

1

n

i i
i

p ε ε
=

=∑ .  (3) 

Let the Lagrangian be 

1
ln ( 1)[

n

i i
i

L p p λ
=

= − − −∑
1

1]
n

i
i

p
=

−∑ μ− [
1

n

i i
i

p ε ε
=

−∑ ]  (4) 

differentiating with respect to ip ’s, we get 

ln 0
, exp( )

i i

i i

p
or p

λ με
λ με

+ + =

= − −
 

where μλ , are to be determined by using (2),(3) so that    
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1

exp( )
, 1, 2,...., ,

exp( )

i
i n

i
i

p i n
με

με
=

−
= =

−∑
  (5) 

where 1

1

exp( )

exp( )

n

i i
i

n

i
i

ε με
ε

με

=

=

−
=

−

∑

∑
,  (6) 

and n =  number of energy levels, μ =
1 ,k

kT
is Boltzmann constant, and T is 

absolute temperature. 
 
Equation (5) is the well-known Maxwell-Boltzmann distribution.  
 
(1)The new MEPD when we take the B.E. measure of entropy is 
 

 -
1 1

ln (1 ) ln(1 )
n n

i i i i
i i

p p p p
= =

+ + +∑ ∑ , subject to (2),(3).   

Here, we show the MEPD given by 

1
exp( ) 1i

i

p
μ νε

=
+ −

. (7) 

Let us consider the Lagrangian 

1 1 1 1
ln (1 ) ln(1 ) ( 1) ( )

n n n n

i i i i i i i
i i i i

L p p p p p pμ ν ε ε
= = = =

= − + + + − − − −∑ ∑ ∑ ∑ , (8) 

maximizing for variations in ip ’s, we get 

{ }(ln 1) ln(1 ) 1 0i i ip p μ νε− + + + + − − =   (9) 

or,  ln ln(1 )i i ip p μ νε− + + = +  

or, 
1

exp( )i
i

i

p
p

μ νε
+

= +   (10) 

or, 1
exp( ) 1i

i

p
μ νε

=
+ −

  (11) 

(2) In the second case, we show the probability distributions which maximize the 
entropy measure 
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1 1
ln (1 ) ln(1 )

n n

i i i i
i i

p p p p
= =

− − − −∑ ∑ .  (12) 

Subject to (2) & (3) is given by 

1
exp( ) 1i

i

p
μ νε

=
+ +

  (13) 

The above can be proved in similar manner by choosing the Lagrangian 

1 1 1 1
ln (1 ) ln(1 ) ( 1) ( )

n n n n

i i i i i i i
i i i i

L p p p p p pμ ν ε ε
= = = =

≡ − − − − − − − −∑ ∑ ∑ ∑ . (14) 

Here, maximizing for variations in ip , we get 

{ }(ln 1) ln(1 ) 1i i ip p μ νε− + − − − − − − =0 (15) 

or, ln ln(1 )i i ip p μ νε− + − = +  (16) 

or, 1
exp( )i

i
i

p
p

μ νε
−

= +  (17) 

1
exp( ) 1i

i

p
μ νε

∴ =
+ +

 (18) 

The reverse cases 

(3) If 
1exp( ) 1i ip μ νε −

= + +⎡ ⎤⎣ ⎦  maximizes 
1

( )
n

i
i

f p
=
∑  (19) 

Subject to (2), (3) 

then, ( ) ln (1 ) ln(1 )f x x x x x= − − − −  (20) 

Let the Langrangian  

1 1
( ) ( 1) ( )

n n

i i i i
i i

L f p p pμ ν ε ε
= =

≡ − − − −∑ ∑ ∑  (21) 

0
i

L
p
∂

∴ =
∂

 gives us ( ) 0i if p μ νε′ − − =  (22) 

( )i if p μ νε′∴ = +  

or, f ′ ((exp( 1) 1) )i iμ νε μ νε−+ + = +  (23) 

or, 1( ) ln( 1 1) ,
1

z
izf e where z

e
μ νε′ = + − = +

+
 (24) 
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or, 1( ) ln( 1) ln(1 ) ln(1 ) lnf x x x x
x

′ = − = − = − −  (25) 

Integrating, we get 

( ) ln (1 ) lnf x x x x x= − − − . (26) 

Without loss of generality, the constant of integration is assumed to be zero. 

(4)  Similarly if 
1exp( ) 1i ip μ νε −

= + −⎡ ⎤⎣ ⎦ , (27) 

maximizes 
1

( )
n

i
i

f p
=
∑ subject to (19) & (20), 

then ( ) ln (1 ) ln(1 )f x x x x x= − + + + . (27) 

Progressing in the same manner, we get 

1 ln( 1 1)
1

z
zf e

e
⎛ ⎞′ = − +⎜ ⎟−⎝ ⎠

 

or, 1( ) ln( 1)f x
x

′ = +  (29) 

or, ( ) ln(1 ) lnf x x x′ = + −   (30) 

or, ( ) ln (1 ) ln(1 )f x x x x x= − + + +   (31) 

A new result: 

(5) Let i jp  be the probability of there being j particle in the thi energy level. Let 

iq  be a priori probability, assumed as known, of the system being in the thi

energy level,   so that 
1

1
n

i
i

q
=

=∑ .  (32) 

Since the number of particles in the thi  energy level can be 0 and 1 instead of the 
values 0, 1, 2, 3 ……., we get, 

1

0
1, 1, 2,3,....,i j

j
p i n

=

= =∑ . (33) 

Let the expected numbers of particles and the expected energy to be prescribed are 
a  and b ,  respectively, so that 
 

1

1 0

n

i i j
i j

q jp a
= =

=∑ ∑  (34) 
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and 
1

1 0

n

i i i j
i j

q jp bε
= =

=∑ ∑  (35) 

then, we know exp( ( ) )i j i ip a jμ νε= − + , (36) 

and get 1/ (exp( ( )) 1)i ia μ νε= − + + . (37) 

Now if in is the expected number of particle in the thi energy level, by using  
(36) and (37), we have 

1

0

1
exp( ) 1i i j

j i

n jp
μ νε=

= =
+ +∑ . (38) 

Now, we prove that for a F.D. distribution 

max
1 1

ln (1 ) ln(1 )
n n

i i i i
i i

s n n n n
= =

= − − − −∑ ∑  

by using (33), (34), (35), (36), (37) and (38), 
 
the maximum entropy S  given by 

1

max
1 0

ln
n

i i j i j
i j

s q p p
= =

= −∑ ∑  

= 
1

1 0
ln exp( ( ) )

n

i i j i i
i j

q p a jμ νε
= =

− − +⎡ ⎤⎣ ⎦∑ ∑  

= 
1

ln
n

i i j i i j i i j
i

q p a jp j pμ ν ε
=

⎡ ⎤− − −⎣ ⎦∑ ∑ ∑ ∑   

= lni iq a a bμ ν− + +∑  

= ( )
1

ln 1 / (exp( ( )) 1)
n

i i i i i j
i

q q jpμ νε μ νε
=

− − + + + +⎡ ⎤⎣ ⎦∑ ∑ ∑  

= ( )ln 1 exp( ( ))i i i iq nμ νε μ νε+ − + + +⎡ ⎤⎣ ⎦∑  

= 1ln 1 ln 1
1

i
i i

i i

n
q n

n n

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪+ + −⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟−⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
∑  

=
1

11ln( ) ln
1

n
i

i i
i i i

n
q n

n n=

⎧ ⎫⎛ ⎞−⎪ ⎪+ ⎜ ⎟⎨ ⎬⎜ ⎟−⎪ ⎪⎝ ⎠⎩ ⎭
∑  
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= { }
1

ln(1 ) ln(1 ) ln
n

i i i i i i
i

q n n n n n
=

− − + − −∑  

= { }
1

ln (1 ) ln(1 )
n

i i i i i
i

q n n n n
=

− − − −∑   (39) 

 
3. CONCLUSION 

The measures discussed in this paper are closely related to the classical 
distributions, seen in quantum mechanics of a gas of very weakly coupled particles where 
the total wave function is either anti symmetric or symmetric. In the anti symmetric case, 
we are led to F.D. where any given elementary state can be occupied by at most one 
particle. In the symmetric case, we get B.E. where there is no restriction on the 
occupation number of a given particle. Regarding the applicability of Bose Einstein and 
Fermi-Dirac entropy, we state that though Shannon Entropy is of wide range of 
applicability, B.E. and F.D. distributions have been applied successfully in case of work 
trip distribution and commodity distribution, respectively [8]. 
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