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Abstract: This paper considers a discrete-time bulk-service queue with infinite buffer 
space and delay multiple working vacations. Considering a late arrival system with 
delayed access (LAS-AD), it is assumed that the inter-arrival times, service times, 
vacation times are all geometrically distributed. The server does not take a vacation 
immediately at service complete epoch but keeps idle period. According to a bulk-service 
rule, at least one customer is needed to start a service with a maximum serving capacity
' 'a . Using probability analysis method and displacement operator method, the queue 
length and the probability generating function of waiting time at pre-arrival epochs are 
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obtained. Furthermore, the outside observer’s observation epoch queue length 
distributions are given. Finally, computational examples with numerical results in the 
form of graphs and tables are discussed. 

Keywords: Discrete time, bulk-service, working vacations, queue, waiting time distribution. 
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1. INTRODUCTION 

Discrete-time queues with server’s vacation have been studied extensively and 
applied in manufacturing system, telecommunications network and switching systems, 
etc. In the past, several discrete time queueing models with server vacation (single or 
multiple) have been investigated by many researchers, and a considerable amount of 
work has been done. The work related to / /1Geom G queue (including batch arrivals) 
with various vacation policies can be found in the book by Takagi (1993). Analysis of the 

/ /1Geom G queue with multiple adaptive vacations and the / /1GI Geo queue with 
multiple vacations are carried out by Zhang and Tian (2001, 2002). The / /1XGeo G
queue with multiple vacations is studied by Fiems and Bruneel (2002). Using the matrix-
analytic method, Alfa (2003) analyzed a class of discrete-time vacation models in which 
distributions of inter-arrival times, service times, vacation times and operational times are 
of phase type. The / /1D MAP PH− queue with vacations and exhaustive time-limited 
service has been studied by Alfa (1995). All the aforementioned studies have been 
carried out by assuming infinite buffer capacities. Simultaneously, some researches on 
the finite buffer / /1 /Geo G N  vacation queues can be found in Takagi (1993). 

Servi and Finn (2002) studied an / /1M M queuing model with a new type of 
vacation policy called a working vacation policy. That is, the server does not completely 
stop serving the customers during a vacation period but it serves customers with a lower 
rate than in a normal busy period. Wu and Takagi (2006) extended this work to 

/ /1 /M G WV model with generally distributed service times as well as vacation 
durations. Baba (2005) considered the / /1 /GI M WV system with the distribution of the 
vacation duration having an exponential distribution. And, the finite buffer model 

/ /1 / /GI M N WV is presented by Banik et al. (2007) with multiple working vacations 
policy. 

Similarly, in the discrete-time counterpart of the / /1 /M M WV case, by using 
quasi-birth-death process and matrix-geometric solution method, Tian et al. (2007) 
analyzed the / /1/Geom Geom WV queue with geometrically distributed vacation. 
Subsequently, Li et al.(2007) investigated the / /1GI Geo queue with multiple working 
vacations in which the vacation time follows geometric distribution. They obtained some 
stationary distributions and stochastic decomposition properties.  

Though the working vacation queues have received wide attention with the rule 
that the server serves customers singly, many a time there is also a need for bulk-service 
rules. Yu et al. (2009) considered a finite capacity and bulk-arrival and bulk-service 
continuous-time queuing system with server working vacations. Vijaya Laxmi (2011) 
studied a renewal input infinite buffer batch service queue with single exponential 
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working vacation and accessibility to batches. Goswami (2011) investigated a discrete-
time batch service renewal input queue with multiple working vacations.  

In papers [13-15], the authors assume that the server takes a vacation 
immediately at a service completion epoch or at a vacation completion epoch. Assuming 
that the server takes vacation immediately at a service completion epoch, in a late arrival 
system with delayed access where customers are served depart the service completion 
epoch in ( , )n n+ , some new customer may arrive in (( 1) , 1)n n−+ +  due to the very short 
interval, may happen that the server had hardly left the system when the customers 
arrived. In this case, degree of satisfaction of customers for the system may decrease and 
even lead to loss of profit. Similarly, in continuous time queue such as [16], the author 
assumes that the server takes a vacation immediately at service completion, which will 
cause a loss to the system, too. 

This paper studies a discrete-time bulk-service LAS-DA queuing system with 
server working vacations. Assume that the server remains dormant between the service 
completion epoch in ( , )n n+  and the next arrival epoch in (( 1) , 1)n n−+ + . If some 
customers arrive in (( 1) , 1)n n−+ + , the dormant period will last until the beginning of the 
epoch of service in ( 1,( 1) )n n ++ + . Otherwise, the server takes a vacation at time 1n +
immediately. The start and the completion of the vacation happens at time n . On the 
completion of vacation, if no customers are waiting for service in the system, the server 
takes another vacation immediately. Application of a probability analysis method is 
carried out to analyze the queue length and the probability generating function of waiting 
time at pre-arrival epoch. Furthermore, the queue length distributions of outside 
observer's observation epoch are given. Finally, computational examples with a variety of 
numerical results in the form of graphs and tables are discussed. 

The rest of the paper is arranged as follows. In the next section, the model of the 
considered queuing system is described. In section 3, the stationary distribution of queue 
length at pre-arrival epoch is discussed. In section 4, we study the waiting time 
distribution. In section 5, we discuss the queue length distributions of outside observer's 
observation epoch. In section 6, some numerical results and the sensitivity analysis of 
this system are given. 

2. SYSTEM DESCRIPTION 

We consider a discrete-time bulk-service infinite buffer space queuing system 
with server delayed multiple working vacations according to the rule of LAS-DA. 
Assume that the time axis is slotted into intervals of equal length with the length of a slot 
being unity, marked as 0, 1, 2, …, n, … . A potential arrival occurs in the interval ( , )n n−

and potential batch-departures occur in ( , )n n+ . The inter-arrival times T  of customers 
are independent and geometrically distributed with probability mass function (p.m.f.)

1{ } , 1, 1kP T k pp k p p−= = ≥ = − . 
The customers are served in batches of variable capacity, the maximum service 

capacity for the server being ( 1)a a ≥ . Service times bS  during normal busy period and 
service times vS during a working vacation are assumed to be independent and 

geometrically distributed with p.m.f. { } 1, 1, 1k
b b b b bP S k kμ μ μ μ−= = ≥ = −  and p.m.f.
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1{ } , 1, 1k
v v v v vP S k kμ μ μ μ−= = ≥ = − , respectively. Assume that the server remains dormant 

between the service completion epoch in ( , )n n+  and the next arrival epoch in
(( 1) , 1)n n−+ + . If some customers arrive in (( 1) , 1)n n−+ + , the dormant period will last until 
the beginning of the epoch of service in ( 1,( 1) )n n ++ + . Otherwise, the server takes a 
vacation at time 1n + immediately. The start and completion of the vacation happen at 
time n . The working vacation time V follows a geometric distribution with parameter 

(0 1)θ θ< < and its p.m.f. is 1{ } , 1, 1kP V k kθθ θ θ−= = ≥ = − . On the completion of 
vacation, if no customers are waiting for service in the system, the server takes another 
vacation immediately. If there are some customers being served after the server finishes a 
vacation, the service interrupted at the end of a vacation is lost, and it is restarted with 
service rate bμ at the beginning of the following service period, which means that the 
normal busy period starts. The various time epochs at which events occur are depicted in 
Figure 1. 

 
 
                                                  ∗                        
             −n         n               +n                     −+ )1(n      1+n               ++ )1(n  
 

: Potential arrival epoch; • : Potential batch-departure epoch; ∗ : Outside observer’s 
epoch; 

( ,( 1) )n n+ −+ : Outside observer's interval; n − : Epoch before a potential arrival; 

n + : Epoch after a potential batch-departure; 
Figure 1. various time epochs in LAS-DA 

 

3. THE QUEUE LENGTH AT PRE-ARRIVAL EPOCH 

When the system becomes empty, let 0,0 ( )Q n− denote the probability that the 

server is on vacation and no customers are waiting in the system at time n− . Let 

00,1 ( )Q n− denote the probability that the server is idle and no customers are waiting in the 

system at time n− . During a working vacation, let 
1,0 ( )kQ n− be the probability that the 

server is on vacation and ( 0)k k ≥ customers are waiting  in the queue (excluding the one 

in service). Further, let ,1( )kQ n− be the probability that the server is on normal busy 
period and ( 0)k k ≥ customers are waiting in queue (excluding the one in service). 
Define the steady-state probability as follows: 
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0,0 0,0lim ( )
n

Q nπ
−

−

→∞
= ;

0 00,1 0,1lim ( )
n

Q nπ
−

−

→∞
= ;

1 1,0 ,0lim ( )k k
n

Q nπ
−

−

→∞
= , 0k ≥ ;

,1 ,1lim ( )k k
n

Q nπ
−

−

→∞
= , 0k ≥ . We have 

Theorem 1: If 0 / 1bp aρ μ= < , 1 / 1vp aρ μ= < , we get 

1)
10,0 0 0,0vπ μ ω π= ,

1 1,0 0,0
k

kπ π ξ= , 
0 10,1 0 0,0( )vμπ βω γ π

γβ
= − ,  

2)
10,1 0 0,0( )v

bp
μ

π βω γ π
γβ μ

= − , 1
,1 0 ( 1)k k

k c r c kπ ξ −′ ′′= + ≥ , 

where 
1

0
0

1

(1 ) [ ] ( 1)( )( )1 {
( )(1 )

a a
b b v b

b

p pp p p p pr p pr
c

p p r
μ μ μ βω γ μ β ξ ξ

γβ μ β ξ ω

+− − − − + + − −′ = −
− −

1

0
0,0

( 1)[ ]
}vp pβ μ ω
π

β
− +

− , 1β
θ

= , v

v

p
p
μ

γ
μ

= , 0
1

(1 )vp
βω γ
μ ξ

−
= +

−
, 

1
1

a a
b b b bp p p pω μ μ ξ μ ξ μ ξ += + + + , 10,0

1

( 1)( )
( )
p p

c
β ξ ξπ

β ξ ω
− +

′′ =
−

,  

1

1
0

0,0
1

(1 ) ( ) ( 1)( )( )
{ {

(1 ) ( )(1 )

a a
b b v b

b

p pp p p p pr p prr
p r p r

μ μ μ βω γ μ β ξ ξ
π

γβ μ β ξ ω

+− − − − + + − −
= −

− − −
 

10 0
0

1

( 1)( ) (1 )( )1 ( 1)( )} }
1 ( )(1 )

v v b
v

b

p p p p p
p

β μω μ μ βω γ β ξ ξμω
β ξ γβ μ β ξ ω ξ

−− + + − − +
− + + + +

− − −
. 

ξ  is the root of the equation 1 (1 ) 0a a
v v v vp z p z p z pμ θ μ θ μ θ μ θ+ + − − + = , 

which is less than 1 and greater than 0. r is the root of the equation 
0)1(1 =−−+++ zppzpzp bb

a
b

a
b μμμμ , which is less than 1 and greater than 0. 

 
Proof. In order to obtain the steady-state probability, we first construct the difference 
equations by relating the states of the system at two consecutive prior to potential arrival 
epochs n− and ( 1)n −+ . Using the probabilistic argument, we obtain 

1 00,0 0,0 0,0 0,1(( 1) ) ( ) ( ) ( )vQ n pQ n p Q n pQ nμ θ− − − −+ = + + , (1) 

1 1 1

1

0 ,0 0,0 0,0 ,0
1

1,0
1

(( 1) ) ( ) ( ) ( )

( )

a

v v i
i

a

v i
i

Q n p Q n p Q n p Q n

p Q n

θ μ θ μ θ

μ θ

− − − −

=

−
−

=

+ = + +

+

∑

∑
 (2) 
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1 1 1

1 1

,0 ,0 1,0

,0 1,0

(( 1) ) ( ) ( )

( ) ( ), ( 1),
k v k v k

v k a v k a

Q n p Q n p Q n

p Q n p Q n k

μ θ μ θ

μ θ μ θ

− − −
−

− −
+ + −

+ = +

+ + ≥
 (3) 

1

0

0,1 0,0 0,0 0,1

,1 1,1 0,1
1 1

(( 1) ) ( ) ( ) ( )

( ) ( ) ( ),

b

a a

b i b i
i i

Q n p Q n p Q n p Q n

p Q n p Q n pQ n

θ θ μ

μ μ

− − − −

− − −
−

= =

+ = + +

+ + +∑ ∑
 (4) 

1 1,1 ,0 1,0 ,1

1,1 ,1 1,1

(( 1) ) ( ) ( ) ( )

( ) ( ) ( ), ( 1),
k k k b k

b k b k a b k a

Q n p Q n p Q n p Q n

p Q n p Q n p Q n k

θ θ μ

μ μ μ

− − − −
−

− − −
− + + −

+ = + +

+ + + ≥
 (5) 

00,1 0,1(( 1) ) ( )bQ n p Q nμ− −+ =  (6) 

In the steady state, the above Eqs. (1)- (6) reduce to  

1 00,0 0,0 0,0 0,1vp p pπ π μ θπ π= + + , (7) 

1 1 1 10,0 0,0 0,0 ,0 1,0
1 1

a a

v v i v i
i i

p p p pπ θπ μ θπ μ θ π μ θ π −
= =

= + + +∑ ∑ , (8) 

1 1 1 1 1,0 ,0 1,0 ,0 1,0k v k v k v k a v k ap p p pπ μ θπ μ θπ μ θπ μ θπ− + + −= + + + , (9) 

1 00,1 0,0 0,0 0,1 ,1 1,1 0,1
1 1

a a

b b i b i
i i

p p p p p pπ θπ θπ μ π μ π μ π π−
= =

= + + + + +∑ ∑ , (10) 

1 1,1 ,0 1,0 ,1 1,1 ,1 1,1k k k b k b k b k a b k ap p p p p pπ θπ θπ μ π μ π μ π μ π− − + + −= + + + + + , (11) 

00,1 0,1bpπ μπ= . (12) 

According to the characteristic of differential equations let
1 1,0 ,0

j
k j kEπ π+ = Spiegel 

(1971), , 0,1,2,j Z k∈ = , where E denote difference operator. Substituting it into (9), 
we obtain 

1 1 1 1

1 1
,0 ,0 ,0 ,0(1 ) 0a a

v k v k v k v kp E p E p E pμ θ π μ θ π μ θ π μ θ π− −+ + − − = . 

The characteristic equation associated with the above equation is given by 

1 0
1 1 1

a av v v

v v v

p p p
z z z

p p p
μ θ μ θ μ θ
μ θ μ θ μ θ

+ + + − =
− − −

. (13) 

Let 1( )
1 1 1

a av v v

v v v

p p p
f z z z

p p p
μ θ μ θ μ θ
μ θ μ θ μ θ

+= + +
− − −

 and ( )g z z= .  

Using Rouché's theorem, it can be shown that there is only one real zero root 
that falls in the unit circle (Note: the root must be the real root, otherwise there are at 
least two roots that fall in the unit circle. This is because the imaginary roots of an 



 J. Cheng, Y. Tang, M. Yu / GEOM/GEOM[a]/1/  133 

equation appear in pairs.). We denote this root by (0 1)ξ ξ< < and the other a  roots by

iξ , 1iξ ≥ ( 1, 2,3, , )i a= . So ξ  satisfies ( ) ( ) 0f gξ ξ− = . Therefore, the solution of 
(13) can be written as 

1,0 0
1

a
k k

k i i
i

c cπ ξ ξ
=

= +∑ , 0k ≥ . 

Since ( 1, 2,3, , ) 0ic i a= =  (Otherwise, the probability 
1,0kπ  tends to ∞  when 

k  tends to∞ ),  
we get 

1,0 0
k

k cπ ξ= . Let 0k = ，we get
10 0,0c π= , then  

1 1,0 0,0
k

kπ π ξ= . (14) 

Substituting (14) into (8), we obtain 

10,0 0 0,0vπ μ ω π= ， (15) 

where 1β
θ

= ， v

v

p
p
μ

γ
μ

= .               

Substituting (15) into (7), we have  

0 10,1 0 0,0( )vμπ βω γ π
γβ

= −  (16) 

Where 0
1

(1 )vp
βω γ
μ ξ

−
= +

−
. 

Substituting (15) and (16) into (12), we obtain  

10,1 0 0,0( )v

bp
μ

π βω γ π
γβ μ

= −  (17) 

Now let us solve the equation (11), substituting (14) into (11): 

1,1 ,1 1,1 ,1 1,1 1 0,0
k

k b k b k b k a b k ap p p pπ μ π μ π μ π μ π ωθπ ξ− + + −= + + + + , 

where 1
1

a a
b b b bp p p pω μ μ ξ μ ξ μ ξ += + + + . 

Using ,1 ,1
j

k j kEπ π+ = , , 1, 2,j Z k∈ = , the auxiliary equation of equation (11) 
such that 

1 (1 ) 0a a
b b b bp z p z p z pμ μ μ μ+ + − − + =  (18) 

Let 1( ) a a
b b b bG z p z p z p z pμ μ μ μ+= + + + , obviously (1) 1G = ,

(1) ( 1) 1b b b bG a p ap p a pμ μ μ μ′ = + + + = + − .Since 0 1
b

p
a

ρ
μ

= < , i.e. bp aμ< , we can see that 
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(1) 1G′ > . According to Hunter (1983), the equation ( )z G z=  has the unique real root in 

the unit circle, which can be denoted by r , the other a  roots can be denoted by ir , 

1ir ≥ ( 1, 2, , )i a= . The solution of (18) can be written as 

k
i

a

i
i

k rcrcz ∑
=

′+′=
1

0
* , 1k ≥ . 

Hence, the solution of (11) can be written as 

kk
i

a

i
i

k
k crcrc ξπ ′′+′+′= ∑

=1
01, . 

As mentioned above, we have  
kk

k crc ξπ ′′+′= 01, .  (19) 

Substituting (19) into (11) and associating with 
0)1(1 =−−+++ rpprprp bb

a
b

a
b μμμμ ，we obtain  

10,0

1

( 1)( )
( )
p p

c
β ξ ξπ

β ξ ω
− +

′′ =
−

 (20) 

Substituting (14)-(17), (19), (20) into (10), we obtain 0c′ . According to the 

normalizing condition 
1 00,0 ,0 ,1 0,1

0 0
1i i

i i
π π π π

∞ ∞

= =

+ + + =∑ ∑ , we get 
10,0π . 

Remark: If 1β →  and 1a = , this queuing system is equivalent to / /1Geom Geom
queuing system where the server serves customers singly. We have  

00,1 0π = , 0,1 0π = , ,1 0kπ = , 
10,0

1
1

ξπ
γ γξ
−

=
+ −

， 

1,0
1

1
k

k
ξπ ξ

γ γξ
−

=
+ −

, 0,0
(1 )

1
ξ γπ

γ γξ
−

=
+ −

. 

where v

v

p
p
μ

γ
μ

=  , since 1 / 1vp aρ μ= <  .Hence, when 1a =  we have 

/ 1vp μ <  , i.e., v v vp p pμ μ μ− < −  , and further, we obtain 1v

v

p
p
μ

γ
μ

= > . Since 

1 v

v

p
p
μ

ξ
γ μ

= =  we obtain 

10,0 (1 )π ξ ξ= − ，
1

1
,0 (1 ) k

kπ ξ ξ += − ， 0,0 (1 )π ξ= − . 
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Therefore, 
1

0,0

1,0

1 , 0
{ }

(1 ) , 1kn
k

k
P L k

k
π ξ

π ξ ξ−

= − =⎧⎪= = ⎨ = − ≥⎪⎩
，which are matched with the 

results given by Tian et al.(2007), where L denote the steady-state queue length at slot 
point n− (including the customers in service). 

Corollary: The steady state probability of each state of the system can be 
written as 

0,0{ 0}P J π= = ,
11 0,0

1{ 0 }
1

P J π
ξ

= =
−

, 

10 0,0
0

[ ]
{ 1 } vP J

μ βω γ π
γβ
−

= = , 

10 0,0 0
1{ 1} [ ]

1 1
v

b

rP J c c
p r
μ

βω γ π
γβ μ ξ

′ ′′= = − + +
− −

 

Theorem 2 If 1≤z , the probability generating function (PG.F) of steady state queue 
length is given by 

1

1

0,00 0
0 0,0

( )( )1( ) [1 ]
1 1 1

b v v
v

b

zc zp c rz
L z

p rz z
π ξμ μ μ βω γ

μω π
ξ γ β μ ξ

′′+′+ −
= + + + + +

− − −
 (21) 

And the average queue length is  

10,0 0
2 2( )

(1 ) (1 )
c rc

E L
r

ξπ

ξ

′′+ ′
= +

− −
 (22) 

Proof.  In the steady state the queue length L (excluding the customers in service) at time 
n−  has the following marginal distribution: 

{ 0}P L =  

0 10,0 0,1 0,1 0,0π π π π= + + +  

1

0
0 0,0

( )[ ]1[1
1

b v v
v

b

p
p

μ μ μ βω γ
μ ω π

ξ γβ μ
+ −

= + + +
−

,

1 1

1
,0 ,1 0 0,0{ } ,( 1)k k k

k kP L k c r c kπ π ξ π ξ−′ ′′= = + = + + ≥
. 

Using ∑
∞

=

=+==
1

}{}0{)(
k

kzkLPLPzL , we can obtain (21) easily. 

Furthermore, taking derivation to ( )L z  and letting 1z = , we can get (22).  
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4. THE WAITING TIME DISTRIBUTION 

Let the random variable qT be the total waiting time of the arriving customer in 
the queue. Assume that if the arriving customer sees i customers waiting for service, the 
distribution law that he waits for k  slots is object to ( ) { }i qw k P T k= = , 

0,1, 2, , 0,1, 2, ,i k= = and the PGF is 
0

( ) ( ) k
i i

k
W z w k z

∞

=

= ∑ . In the steady state the 

PGF of waiting time is )(zwq  and 1
0

( ) ( ), 0 ,1q il i
i

w z W z lπ
∞

=

= =∑  

Theorem 3   In the steady state the PGF of waiting time of the arriving customer is given 
by 

1

1

1

0,0 0,1
1

2 1 2

0.0

2 1 2
0,0

( 1)( )( )( ) ( ) ( ) ( )
( )(1 ) 1

( 1)(1 ) ( ) ( )
( ) ( ) ,
(1 )(1 ( )) (1 )(1 )[1 ( ) ][1 ( ) ]

( 1)( )( ) (

a a

q

a a
a a

a
a a

v

a a

p p r rw z q z q z c q z
r

zq q z
r r q zc

z zr r q z q z q

p p q z

β ξ ξ ξ π π
β ξ ω ξ

β ξ ξ
β π

ξ μ ξ ξ
β β

β ξ ξ ξ π

−

−

− + − −′= + +
− − −

− −
−′+ +

− − − − − −

− + −
+

10,0
1

1( )(1 ))
1( )(1 )(1 ( )) (1 )[1 ( ) ]

a

a
a

q z

q z q z

β ξ
β π

β ξ ω ξ ξ ξ ξ
β

−
+

− − − − −

 (23) 

and the average waiting time is  
2 1 1 2 1

0
0,1 2 2

1

2
1

1 ( )[1 (1 )( 2 )] ( 1)( )(2 )( )( ) { {(
(1 )(1 ) ( )(1 )(1 )

(1 ) ( 1)( )( ) ( 1) [ ( 1)(1 ) ]
(1 )( ) ( )(1 ) (

a a a a a a

q a a
b

a a a a
v b v b v v

a
v v

r r r r r c p pE w
μ r r

u μ p p u μ μ
μ u

β ξ ξ ξ ξπ
β ξ ω ξ ξ

β ξ β ξ ξ ξ β β ξ μ ξ β
ξ β ξ β ξ ω ξ

− − −′− − − − − − − +
= + +

− − − − −

− − − + − + − + −
+ + +

− − − − −

1

2

2 2

0.02

1 )( ) (1 )( )

( 1) } }
(1 )( )( )

a a
v v v

a
v b

a
v v v

μ μ u

u μ
μ μ u

ξ β ξ β ξ

β ξ π
ξ β β ξ

− − − − −

−
+

− − − −

 (24) 

Proof. Firstly, we define x⎢ ⎥⎣ ⎦ as the greatest integer function (floor), which 
returns the greatest integer less than or equal to a real number x . An arriving customer 
may observe the system in any of the following two cases. 
 
Case 1.  Since the system considered is a late arrival delayed access system, we have  

{ 0} 0qP T = =  (25) 

Case 2. When )1(, ≥= mmTq , there are two cases as follows: 
1) The server is on normal busy period and i customers are waiting for service.  
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Under this condition, the arriving customer has to wait for 1 i
a
⎢ ⎥+ ⎢ ⎥⎣ ⎦

periods of 

service and each period of service ( 1, 2, )
ibS i = is independent and geometrically 

distributed with p.m.f. 1{ } ,
i

k
b b bP S k μ μ −= = 1, 1b bk μ μ≥ = − . Its PGF is

zμ
zu

b

b

−1
. We 

have 

1 2
1

( ) { }

{ }
i
a

i q

b b b

w m P T m

P s s s m
⎢ ⎥+⎢ ⎥⎣ ⎦

= =

= + + + = . 

Hence 

1
( ) ( )

1

i
ab

i
b

u z
W z

μ z

⎢ ⎥+⎢ ⎥⎣ ⎦=
−

. 

Let ( )
1

b

b

u z
q z

μ z
=

−
, the PGF of waiting time can be given by  

1

1

0,0
,1 0,1

0 1
2 1 2 2 1 2

0,0

1

( 1)( ) ( )
( ) ( ) [ ] ( )

1 ( )(1 )

( 1)( )( ) ( ) ( ) ( )
( )(1 )(1 ( )) (1 )(1 ( ))

aa

i i
i

a a a a

a a

p pr rW z q z c q z
r

p p q z r r q zc
q z r r q z

β ξ ξ ξ ξ π
π π

β ξ ω ξ

β ξ ξ ξ ξπ
β ξ ω ξ ξ

∞

=

− −

− + −−′= + +
− − −

− + − −′+ +
− − − − −

∑
 (26) 

The arriving customer finds that the server is on vacation. 
In this case, if the arriving customer finds i customers waiting for service, he 

has to wait for 1 i
a
⎢ ⎥+⎢ ⎥⎣ ⎦

 periods of service, and each period of service ( 1,2, )
ivS i = is 

independent and geometrically distributed with p.m.f. 1{ } , 1, 1
i

k
v v v v vP S k kμ μ μ μ−= = ≥ = − , It’s 

PGF is 
1

v

v

u z
μ z−

 and 
1

( ) ( )
1

i
av

i
v

u z
W z

μ z

⎢ ⎥+⎢ ⎥⎣ ⎦=
−

. Let ( )
1

v

v

u z
q z

μ z
=

−
, let 

jvs  be the j th length 

of period of service with service rate vμ and let v
js )(  be the sum of lengths of j periods 

of service with service rate vμ , where (0) 0vs =  and 1, 2,3,j = . There are two cases to 
consider to be in this condition: 

A) The server is on vacation whereas 1 i
a
⎢ ⎥+ ⎢ ⎥⎣ ⎦

periods of service ended. We have 
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1 2
1

1 2
1

1 2
1

1 2
1

1

( ) { ; }

{ ; }
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i
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i
a
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∞
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−
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Hence 

1
(1 )1( )

1 1 (1 )(1 )

i
a

v
i

v

z
W z

z
θ μ

θ θ μ

⎢ ⎥+⎢ ⎥⎣ ⎦⎛ ⎞−
= ⎜ ⎟− − − −⎝ ⎠

. 

And the PGF of waiting time can be given by  

1 1 1

1

,0 ,0 0,0
0 0

1( )(1 )
(1 )1( )

11 1 (1 )(1 ) (1 )[1 ( ) ]

ai
a

v
i i i

ai i v
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z q z
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θ θ μ ξ ξ
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−
⎛ ⎞−

= =⎜ ⎟− − − −⎝ ⎠ − −
∑ ∑ . (27) 

B) The vacation is finished and ( 1 )ij j
a
⎢ ⎥< + ⎢ ⎥⎣ ⎦

periods of service ended, the 

service rate is converted to bμ  from vμ , the normal busy period begins. The waiting 
time of the arriving customer should be equal to the sum of the server’s vacation times 

and 1 i j
a

⎢ ⎥+ −⎢ ⎥⎣ ⎦
periods of service, the service rate of 1 i j

a
⎢ ⎥+ −⎢ ⎥⎣ ⎦

periods of service is 

bμ . We have  
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The PGF of waiting time can be given by 

1 2
1

1

1
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,0
( ) ( 1)1 0 0 1
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 (28) 

Adding equations (25)-(28), we can get (23); using 1

( )q
z

dw z
dz = , we can obtain 

(24). 
 

5. OUTSIDER OBSERVER’S DISTRIBUTIONS 

For the late arrival system with delayed access, an outside observer’s 
observation epoch falls in the time interval after a potential departure epoch and before a 
potential arrival epoch. Let 0,0π̂ ,

1,0ˆnπ , ,1ˆnπ  and 
00,1π̂ be the probabilities that the outside 

observer observes no customers in the system and the server is on vacation, n  customers 
in the system (excluding the servicing customers)and the server is on vacation, n
customers in the system(excluding the servicing customers )and the server is in normal 
busy period and  the probability of the server is in idle time, respectively. By observing 
the relationship between arbitrary time t − and the observation epoch )(∗  of the outside 
observer, we have 

0

1 1 1 1

1 1 1 1 1

0 1

0,0 0,0 0,1

0,0 0,0 0,0 1,0 ,0
1 1

,0 ,0 1,0 ,0 1 ,0

0,1 0,0 0,1 0,1 0,0 ,1

ˆ ,

ˆ ,

ˆ ( 1),

ˆ ( ) (

a a

v v k v k
k k

n v n v n v n a v n a

b b k
k

p p

p p p p

p p p p n

p p p p p p

π π π

π μ θπ θπ μ θ π μ θ π

π θμ π θμ π θμ π θμ π

π θπ π μ μ π θπ π

−
= =

− + − +

=

= +

= + + +

= + + + ≥

= + + + + +

∑ ∑

1 1

0

1,1
1 1

,1 ,1 1,1 ,0 1,0 ,1 1 ,1

0,1 0,1

)

ˆ

ˆ( 1),

a a

k b
k

n b n b n n n b n a b n a

b

p

p p p p p p

n p

π μ

π μ π μ π θπ θπ μ π μ π

π μ π

−
=

− − + − +

+

= + + + + +

≥ =

∑ ∑
 

 
 
 



 J. Cheng, Y. Tang, M. Yu / GEOM/GEOM[a]/1/  140

6. NUMERICAL RESULTS AND THE SENSITIVITY ANALYSIS  

In this section, we present some numerical results in tables for queue length 
distributions at the different states of the system. All numerical results have been 
obtained using the results derived in this paper. We observe that 

1,0nπ , ,1nπ  
1,0ˆnπ  and ,1ˆnπ  

monotonically decrease as n increases in table 1, table 2, table 3 and table 4. ( )E L  and 
( )qE w monotonically decrease as a increases. In Fig.2 and Fig.3, Let 10a = , 0.3p =  

and 0.5bμ = ，we have plotted the effect of various vacation service rates on the 
average queue length and the average waiting time, respectively, we observe that the 
average queue length and the average waiting time decrease as vacation service rate 
increases. In Fig.4, let 0.3p = ， 0.4vμ = , 0.5bμ = , 0.3θ = , we observe that the 
average queue length and the average waiting time decrease as the batch size a increases; 
meanwhile, we find that the average queue length is equal to 0.2554 from 6a = on, and 
the average waiting time is equal to 0.8105 from 8a = on, they do not change as the 
batch size increases. 

Table 1.  queue size distribution with 2=a , 3.0=p , 4.0=vμ , 5.0=bμ , 3.0=θ . 

n  
1,0nπ  ,1nπ  

1,0ˆnπ  ,1ˆnπ  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

sum 

0.02 
0.0037 

6.80E-04 
1.25E-04 
2.31E-05 
4.25E-06 
7.83E-07 
1.44E-07 
2.66E-08 
4.89E-09 
0.0246 

0.1416 
0.0361 
0.0092 
0.0023 

5.96E-04 
1.52E-04 
3.86E-05 
9.83E-06 
2.50E-06 
6.37E-07 

0.19 

0.0142 
0.0026 

4.80E-04 
8.85E-05 
1.63E-05 
3.00E-06 
5.54E-07 
1.03E-07 
2.02E-08 
4.89E-09 
1.73E-02 

0.1475 
0.0369 
0.0093 
0.0023 

5.92E-04 
1.50E-04 
3.81E-05 
9.67E-06 
2.46E-06 
6.25E-07 
1.97E-01 

( ) 0.2850E L = , ( )  0.8514qE w =  

Table 2.  queue size distribution with 5a = , 3.0=p , 4.0=vμ , 5.0=bμ , 3.0=θ . 

n  
1,0nπ  ,1nπ  

1,0ˆnπ  ,1ˆnπ  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

sum 

0.02 
0.0036 

6.38E-04 
1.14E-04 
2.03E-05 
3.63E-06 
6.47E-07 
1.16E-07 
2.06E-08 
3.68E-09 
0.0244 

0.1337 
0.0309 
0.0071 
0.0016 

3.81E-04 
8.80E-04 
2.03E-05 
4.70E-06 
1.08E-06 
2.51E-07 
0.1739 

0.0141 
0.0025 

4.50E-04 
8.03E-05 
1.43E-05 
2.56E-06 
4.58E-07 
8.27E-08 
1.56E-08 
3.68E-09 
1.72E-02 

0.1429 
0.0325 
0.0074 
0.0017 

3.90E-04 
8.96E-05 
2.06E-05 
4.75E-06 
1.09E-06 
2.52E-07 
1.85E-01 

( ) 0.2557E L = , ( )  0.8114qE w =  
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Table 3.  queue size distribution with 8a = , 3.0=p , 4.0=vμ , 5.0=bμ , 3.0=θ . 

 
n  

 

1,0nπ  
 

,1nπ  
 

1,0ˆnπ  
 

,1ˆnπ  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

sum 

0.02 
0.0036 

6.37E-04 
1.14E-04 
2.03E-05 
3.62E-06 
6.47E-07 
1.15E-07 
2.06E-08 
3.68E-09 
0.0244 

0.1336 
0.0308 
0.0071 

1.60E-03 
3.79E-04 
8.75E-05 
2.02E-05 
4.66E-06 
1.07E-06 
2.48E-07 
0.1736 

0.0141 
2.50E-03 
4.50E-04 
8.03E-05 
1.43E-05 
2.56E-06 
4.58E-07 
8.25E-08 
1.56E-08 
3.68E-09 
1.72E-02 

0.1428 
0.0325 
0.0074 

1.70E-03 
3.88E-04 
8.91E-05 
2.05E-05 
4.71E-06 
1.08E-06 
2.50E-07 
1.85E-01 

( ) 0.2554E L = , ( )  0.8105qE w =  

Table 4.  queue size distribution with 15a = , 3.0=p , 4.0=vμ , 5.0=bμ , 3.0=θ . 

 
n  

 

1,0nπ  
 

,1nπ  
 

1,0ˆnπ  
 

,1ˆnπ  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

sum 

0.02 
0.0036 

6.37E-04 
1.14E-04 
2.03E-05 
3.62E-06 
6.47E-07 
1.15E-07 
2.06E-08 
3.68E-09 
0.0244 

0.1336 
0.0308 
0.0071 

1.60E-03 
3.79E-04 
8.74E-05 
2.02E-05 
4.66E-06 
1.07E-06 
2.48E-07 
0.1736 

0.0141 
2.50E-03 
4.50E-04 
8.03E-05 
1.43E-05 
2.56E-06 
4.58E-07 
8.25E-08 
1.56E-08 
3.68E-09 
1.72E-02 

0.1428 
0.0325 
0.0074 

1.70E-03 
3.88E-04 
8.91E-05 
2.05E-05 
4.71E-06 
1.08E-06 
2.50E-07 
1.85E-01 

( ) 0.2554E L = , ( )  0.8105qE w =  
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Figure 2. Effect of vμ on the average queue length. 

 

Figure 3. Effect of vμ on the average waiting time. 

 

 
 
 
 
 
 
 
 

Figure4. Effect of a on the average queue length and the average waiting time. 
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