
Yugoslav Journal of Operations Research
24 (2014) Number 1, 21-33
DOI: 10.2298/YJOR121223003U

VARIABLE NEIGHBORHOOD SEARCH FOR MAXIMUM
DIVERSE GROUPING PROBLEM

Dragan UROŠEVIĆ
Mathematical Institute SANU

draganu@mi.sanu.ac.rs

Received: December 2012 / Accepted: January 2013

Abstract: This paper presents a general variable neighborhood search (GVNS) heuristic
for solving the maximum diverse grouping problem. Extensive computational
experiments performed on a series of large random graphs as well as on several instances
of the maximum diversity problem taken from the literature show that the results
obtained by GVNS consistently outperform the best heuristics from the literature.

Keywords: Combinatorial optimization, Maximum Diverse Grouping, Metaheuristics, Variable
Neighborhood Search.

MSC: 90C59, 90C27, 90C06, 90C20.

1. INTRODUCTION

The maximum diverse grouping problem (MDGP) consists of finding a way to
divide a set of n elements into m mutually disjoint groups so that the total diversity
among the elements belonging to the same group is maximized. The diversity among the
elements in a group is calculated as the sum of the individual distance between each pair
of elements. The objective of the problem is to maximize the overall diversity, i.e., the
sum of the diversity of all groups.

Feo and Khellaf [10] proved that the MDGP is NP-hard. The MDGP is also
known as the k-partition problem (Feo et al. [9]), and the equitable partition problem
(Mingers and O’Brien [17], O’Brien and Mingers [20]) that appears in a wide range of
real life situations. The first application is in designing of VLSI circuits (Chen [4]; Feo
and Khellaf [10]). Also, it can be applied in storing large programs onto paged memory
(Kral, [15]), where the subroutines of a program have to be stored onto pages of available
memory. In this case, the objective is to maximize data transfer between subroutines on

 D. Urošević / Variable Neighborhood Search 22

the same page (minimizing in this way data transfers between different pages). One of
the most popular MDGP applications appears in academic context when forming student
groups [20]. Specifically, in business schools, it is nowadays common to create diverse
student workgroups or training teams in order to provide students with diverse
environment [23]. Note that this type of student grouping problem is different from the
one of making MBA student teams [6], where groups are supposed to be as similar as
possible. In that way, the members of the same group diverse. Lofti and Cerveny [16]
proposed Lofti-Cerveny (LC) method for minimizing (instead of maximizing) diversity
in each group, which was also a part of a method for scheduling final exams.

The MDGP can be applied in forming diverse groups of reviewers in scientific
publications or project evaluation in scientific funding agencies [13]. Also, workforce
diversity is an increasing phenomenon in organizations. Creating diverse groups where
people with different background work together, is a way to deal with this heterogeneity
and to facilitate their communication (Bhadury et al. [2]).

1.1. Mathematical formulation

There are two variants of the MDGP. The better known is (MDGP1), where all
groups are forced to have the same number /k n m= of elements. The second variant,
(MDGP2) allows the variable size of groups. So, the number gc of elements in a group g

can be in the interval ,g ga b⎡ ⎤⎣ ⎦ , where g ga b≤ for 1,2, ,g m= … . Obviously, (if we set
/g ga b n m= = for each g) MDGP1 problem is a special case of MDGP2 (). So, if we

developed the method for solving MDGP2, the same method could also be used for
solving MDGP1. In the remainder, MDGP will refer to the general case MDGP2. Both
variants can be formulated as quadratic integer programs. Denote with igx (1,2, ,i n= …
and 1,2, ,g m= …) binary variables defined as follows:

1, if element belongs to group
0, otherwiseig

i g
x

⎧
= ⎨
⎩

A quadratic integer programming formulation of MDGP2 is [8]:

1 1 1
max

m n n
ij ig jg

g i j
z d x x

= = =
= ∑ ∑∑ (1)

such that

1
1,

m
ig

g
x

=
=∑ 1,2, ,i n= … (2)

1

n
ig g

i
x a

=
≥∑ , 1,2, ,g m= … (3)

1

n
ig g

i
x b

=
≤∑ , 1,2, ,g m= … (4)

 D. Urošević / Variable Neighborhood Search 23

Constraint (2) provides that each element i is included (distributed) in exactly
one group. Constraints (3) and (4) provide that group g contains, at least ga , and gb
elements at most.

1.2. Previous work

Arani and Lotfi [1] developed multistart algorithm. This procedure consists of a
random construction followed by an improving phase that partially deconstructs the
random solution, and examines all possible reconstructions in order to determine the best
one. This process is repeated until no reconstructions giving a better solution are found
(i.e., when the current solution cannot be improved). Feo and Khellaf [10] proposed
several heuristics based on graph theory. They considered the special case of even-sized
groups, odd-sized groups, and groups having 2i elements. The authors prove that this
way obtained values are within a bounded percentage of the optimal solution.

Weitz and Jelassi [21] developed a basic constructive heuristic (WJ). The idea is
to avoid the assignment of very similar elements to belong to the same group. WJ first
randomly assigns an element to the first group. The heuristic then selects the element
with the smallest distance to the previously considered element and assigns it to the next
group. When a sweep of all groups has been completed, the procedure goes back to the
first group. The construction finishes when all the elements are assigned.

Weitz and Lakshminarayanan [22] discovered and corrected the errors in the LC
method. The modification of the LC method developed for the MDGP (LCW method) is
presented by Weitz and Lakshminarayanan [23].

Weitz and Lakshminarayanan in [23] made detailed experimentation to compare
all heuristics for the MDGP known at that time. They conclude that the LCW heuristic is
the best. The LCW is an improvement method that can start from a random solution or a
solution generated with the Weitz-Jelassi. The authors did not find significant differences
in solution quality when LCW was started from a random solution and when the WJ
construction method was used to determine starting solution. They however concluded
that there was significant difference in computational time.

Fan et al. [8] presented a hybrid genetic algorithm (LSGA) for the solution of
the MDGP. LSGA combines a genetic algorithm and a local search procedure. The
genetic aspect of LSGA is based on the encoding scheme for grouping problems
proposed by Falkenauer [7]. The local search within LSGA implements a best
improvement strategy based on exchanging elements between groups. Fan et al.’s is the
first publication that describes a method for the general version of the MDGP applicable
to different group sizes.

Gallego et al. [11] proposed Tabu Search for solving MDGP. The local search is
based on exchanging elements between groups and moving one element from one to the
other group. In order to avoid cycling, elements moved within any iteration can not be
moved in the next TabuTenure (a parameter of method) iterations. Also, they allowed
visiting cardinality-infeasible solution during the search. More precisely, they apply
previously described Tabu Search in order to divide elements in a group so that each
group g has at least ga k− and at most gb k+ elements (max1,2, ,k k= …). After finishing
the search, they repair the obtained local optima by moving elements from the groups

 D. Urošević / Variable Neighborhood Search 24

that have more than gb elements to the groups that have less than ga elements. They
call their method Tabu Search with Strategic Oscillation and denote it with SO. In this
paper for the first time is suggested VNS based heuristic for maximum diversity grouping
problem.

The rest of the paper is organized as follows: In Section 2, we provide the
detailed rules of General VNS (GVNS) heuristics for solving the MDGP. This includes a
description of the Neighborhoods used within Variable neighborhood descent (VND).
Section 3 gives a summary of computational results on several problem instances from
the literature, and Section 4 concludes the paper.

2. GENERAL VARIABLE NEIGHBORHOOD SEARCH FOR MDGP

In this section, we describe the components of our GVNS heuristic: the solution
space, the three local search neighborhoods used (Insertion, 2-opt and 3-opt), the shaking
step, and our new GVNS algorithm.

2.1. Solution space

Solution space consists of all possible feasible divisions of elements into groups.
A division is feasible if and only if each created group g contains at least ga and at most

gb elements. Solution is represented with an array cx of length n such that []cx i is the
label of the group containing element i (1,2, ,i n= …). In order to speedup local search, we
also maintain matrix csd such that [][]csd i g is the sum of diversities between element i
and all elements assigned to the group g in the current solution:

[]
1,2, ,

[][]
c

c
ij

x j g
j n

sd i g d
=

=

= ∑
…

.

Note that for the current solution, matrix sd can be computed in ()2O n .

2.2. VND Local Search

The Local Search is organized as Variable Neighborhood Descent. The
following neighborhoods are designed: Inseriont, Swap and 3-Chain.
Neighborhood Insertion contains solutions obtained by moving only one element from
the current group to the other group. By using previously described matrix csd , it is
possible to efficiently compute, for each feasible move, the change of the objective
function value. Denote with nx the solution obtained form a solution cx by moving
element i from a group 1g to a group 2g . In this case, the sum of diversities in all groups
except the groups 1g and 2g , are unchanged. The element i is removed from the group

1g , and because of that, the sum of diversities in the group 1g decreases for the sum of
diversities between i and all other elements belonging to the group 1g . Element i is
inserted into 2g , hence, the sum of diversities in 2g increases for all diversities between i

 D. Urošević / Variable Neighborhood Search 25

and elements belonging to the group 2g . It is easy to conclude that the difference

between objective function values for solutions cx and nx is

2 1() () [][] [][]n c c cf f x f x sd i g sd i gΔ = − = − .

If we perform Insertion step, we change the current solution and then it is
necessary to update matrix sd. If the element i moves from the group 1g to the group 2g ,

then groups 1g and 2g are modified and values 1[][]csd j g and 2[][]csd j g must be
updated in the following way

1 1[][] [][] [][]c csd j g sd j g d j i= −

and

2 2[][] [][] [][]c csd j g sd j g d j i= + .

Since this updating must be performed for each element j, updating of matrix sd after
performing Insertion move has the complexity ()O n . On the other hand, the cardinality
of Insertion neighborhood is ()O nm .

Neighborhood Swap contains solutions obtained by swapping pair of elements
belonging to different groups (elements exchange the group currently assigned to). Let an
element i be in a group ig and an element j in a group jg in the current solution cx .

Denote with nx solution obtained after moving element i into group jg and element j
into group ig . Since the element i is removed from the group ig , the diversities between
element i and elements remaining in the group ig do not contribute to objective function
value of a new solution. But, because the element i is inserted in the group jg , all
diversities between i and the elements belonging to the group jg contribute to objective
function value of a new solution. Similar facts are true for the element j. So, we can
finally calculate difference between objective value for a new and for the old solutions:

() ()() () [][] [][] [][] [][] 2 [][]n c c c c c
j i i jf f x f x sd i g sd i g sd j g sd j g d i jΔ = − = − + − −

It is obvious that the change in objective value for each solution from neighborhood
Swap is done in (1)O . Cardinality of Swap is ()2O n . After performing Seap move, it is

necessary to update the matrix sd, and complexity of this update is ()O n (we can
consider 2-opt as two successive Insertions).

One 3-Chain move is determined by three elements i, j and k belonging to three
different groups: ig , jg and kg , respectively, and by moving the element i to the group

jg , the element j to the group kg and the element k to the group ig . Neighborhood 3-
Chain consists of solution obtained by performing 3-Chain move.
If we denote with cx and nx solutions before and after the move, we can calculate the
difference between objective function values as follows:

 D. Urošević / Variable Neighborhood Search 26

()
()
()
()

() () [][] [][]

[][] [][]

[][] [][]

[][] [][] [][]

n c c c
j i

c c
k j

c c
k j

f f x f x sd i g sd i g

sd j g sd j g

sd j g sd j g

d i j d j k d k i

Δ = − = − +

+ − +

+ − −

+ + +

So, complexity of solution checking is (1)O , but complexity (cardinality) of the whole
neighborhood is 3()O n .
We develop two variants of variable neighborhood descent:

• VND-2 – use neighborhoods Insertion and Swap, in this order
• VND-3 – use all three developed neighborhoods in the following order:

Insertion, Swap, 3-Chain.

2.3. Initial solution

Calculation of an initial solution is done in two phases. First, we ensure that
each group g contains at least ga elements by inserting the chosen elements. In the
second phase, we distribute the remaining elements so that each group g contains at most

gb elements. At the beginning, we select m elements at random and insert them into
different groups.

Denote with gE a set of elements currently assigned to a group g. During the
first phase, we maintain the set of groups that have fewer elements than the desired
minimum:

{ }' : g gG g E a= <

 Each iteration of the first phase consists of selecting at random one unassigned
element, denoted with i, and assigning it to a selected group. The selected element must
be inserted into one of the groups from the set G’. So, for each group 'g G∈ , we
calculate average distance between the selected element i and all the elements belonging
to the group g, and select the group whose average distance value is maximal. The
selected group g is one for which expression igD defined as

g

ij
j E

ig
g

d

D
E

∈
=

∑

is maximized.
The first phase ends when the set G’ becomes empty. During the second phase,

we maintain a set of groups that have fewer elements than the desired maximum:

{ }' : g gG g E b= < .

All other steps of the second phase are the same. The second phase finishes when all
elements have been assigned.

 D. Urošević / Variable Neighborhood Search 27

 The initial solution can also be created at random: instead of assigning a
selected element to a group with maximal average distance, we assign it to a randomly
selected group.

2.4. Shaking

In order to perform perturbation of the incumbent solution, we define kth

neighborhood as a set of solutions obtained by k consecutive Swap moves. Thus, in the
Shaking step, we generate a random solution from the kth neighborhood of the current
solution by performing k random Swap moves. In each move i, 1, ,i k= … , we randomly
select two elements that belong to two different groups.

2.5. GVNS for MDGP

Variable Neighborhood Search combines previously described VND and the
Shaking step. We propose small modification of the basic VNS: during execution, we
periodically restart VNS search starting from the new initial solution. The new initial
solution created each time when the neighborhood counter k reaches the maximal
allowed value (maxk) restn times. The number restn is a parameter of the method and in
our experiments is set to 2. Similar modification of the basic VNS may be seen in [19].
Pseudocode for GVNS is given in Figure 1.
program GVNS(xopt, kmin, kmax, kstep, tmax, nrest)
 x := InitialSoution;
 x := VND(x);
 xopt := x;
 k := kmin;
 niter := 0;
 while RunningTime < tmax do
 x’ := Shake(x, k);
 x’’ := VND(x’)
 if f(x’’) > f(x) then
 x := x’’; k := kmin;
 else
 k := k + kstep;
 if k > kmax then
 niter := niter+1;
 if niter = nrest then
 if f(x) > f(xopt) then xopt := x;
 x := IniitalSolution;
 niter := 0;
 endif
 k := kmin;
 endif
 endif
 endwhile

 D. Urošević / Variable Neighborhood Search 28

3. COMPUTATIONAL RESULTS

In this section the computational results of the proposed GVNS heuristics and a
comparison with existing algorithms are given. The proposed method is implemented in
C++ programming language. All computations are performed on computer based on Intel
Pentium Core Duo (2.66GHz) with 6GB RAM, running the Linux operating system.

3.1. Test instances

We used 480 instances in our experimentation. This benchmark set of instances,
referred to as MDGPLIB, is available at http://www.optsicom.es/mdgp. The set is
divided into three subsets:

1. RanReal — This set consists of 160 instances in which the distance values ijd
are real numbers generated by using a Uniform distribution U(0,100). The number of
elements n, the number of groups m and the limits of each group size ga and gb are
shown in Table 1. There are 20 instances for each combination of parameters (i.e., each
row in Table 1): 10 for instances with equal group size (EGS), and 10 for instances with
different group size (DGS). For the 10 instances in EGS, the group size is equal for all
instances and is calculated as /n m⎢ ⎥⎣ ⎦ . For the 10 instances in DGS, the limits of each

group (ga and gb) for each instance are generated randomly in the predefined interval.

That is, the value of ga is generated in the interval min max,g ga a⎡ ⎤⎣ ⎦ and the value of gb is

generated in the interval min max,g gb b⎡ ⎤⎣ ⎦ . This data set was introduced by Fan et al. [8] with

n ranging from 10 to 240. Gallego at al. [11] have generated larger instances with
480n = and 960n = .

Table 1. Summary of value of parameters used to generate instances
n m g ga b= min

ga max
ga min

gb max
gb

10 2 5 3 5 5 7
12 4 3 2 3 3 5
30 5 6 5 6 6 10
60 6 10 7 10 10 14

120 10 12 8 12 12 16
240 12 20 15 20 20 25
480 20 24 18 24 24 30
960 24 40 32 40 40 48

2. RanInt — This set has the same structure and size as RanReal (shown in

Table 1) but distances are generated with an integer Uniform distribution (0,100)U .
3. Geo — This set follows the same structure and size as the previous two,

however, distance values are calculated as Euclidean distances between a pair of points
with coordinates randomly generated in [0,10]. The number of coordinates for each
instance is generated randomly in the range 2 to 21. Glover et al. [12] introduced this
generator for the Maximum Diversity Problem.

 D. Urošević / Variable Neighborhood Search 29

3.2. Local Search

In the first series of experiments, we compare local searches in the three defined
neighborhood structures together with the two VND procedures. First, we examine the
test case with n=960 and m=24 (different group sizes variant). One thousand initial points
are generated by using greedy procedure described above, and a local search is performed
from each one in each type of neighborhood. For each local optima obtained by local
search, percentual deviation over the best known solution (obtained by GVNS) is
calculated. In Table, 2 we give the summarized results. For each neighborhood (i.e.
corresponding Local search) minimal, maximal, and average deviation is shown. Also,
the average computational time is given.

Table 2. Comparison of local searches on RanReal instance with n=960 and m=24
Local
Search

Percentual deviation
over best

Time

Min Max Avg
Insertion 6.64 9.59 8.45 0.03
Swap 2.12 3.67 2.70 0.12
3-Chain 1.64 3.35 2.21 58.58
VND-2 1.01 2.49 1.47 0.15
VND-3 0.39 2.28 0.87 23.20

We observe that

• Local search in neighborhood 3-Chain produce better solutions than the local
search in Swap, but average execution time is significantly longer (0.12 sec vs
58.58 sec).

• VND-2 as a local search gives better results than Local Search in any single
neighborhood explored. As in the other problems (see e.g. [14]), VND-2 gives
better results than local search in 3-Chain; however VND-2 is significantly
faster.

• VND-3 local search gives the best results, but the execution times are very long.
Based on this analysis, we decided to use VND-2 as Local Search within GVNS.

3.3. Initial Solution

 The second experiment is dedicated to comparing methods for generating the
initial solution. We propose two methods for computing an initial solution: greedy and
random. One thousand random initial solutions were generated and local search was
performed on each of them. Similarly, one thousand greedy initial solutions were
produced and then the local search performed. Table 3 summarizes the results obtained.
For each neighborhood minimal, maximal and average percentual deviation of local
optima over the best known is given. From this Table, we conclude that the results
obtained by local search from greedy initial solution in each type of neighborhood is
better than the results produced by local search from the random initial solution. Also, the
execution times for local search that start from random solutions are longer. Based on

 D. Urošević / Variable Neighborhood Search 30

these results, we decided to use greedy initial solution as the initial solution within our
GVNS.

Table 3. Influence of the initial solution to local search. All tests are performed on
RanReal instance with n=960 and m=24
 Random Initial Greedy Initial
 Percentual deviation Time Percentual deviation Time
 Min Max Avg Min Max Avg
Insertion 9.55 16.05 13.29 0.04 6.64 9.59 8.45 0.03
Swap 3.19 4.55 3.92 0.21 2.12 3.67 2.70 0.12
3-Chain 2.78 3.86 3.37 110.34 1.64 3.35 2.21 58.58
VND-2 2.02 3.18 2.60 0.24 1.01 2.49 1.47 0.15
VND3 1.33 2.66 2.00 33.47 0.39 2.28 0.87 23.20

3.4. Importance of “restarting” search within GVNS

As we have said in the previous sections, we modify the basic VNS, and during
the complete GVNS, we periodically restart search from new greedy initial solution. In
the next experiment, we compare classical GVNS and the variant with periodical restart.
We tested these two variants on 10 DFS (different groups sizes) instances with n=960
elements and m=24 groups. Both methods were executed 20 times for each instance. In
both methods, the same values for the parameters were used: min max step2, 60, 2k k k= = =
and rest 2n = .Table 4 reports the following: the best results obtained by the corresponding
method, the worst results obtained by the corresponding method, and the average results.

Table 4. Comparing GVNS without periodical restart and GVNS with periodical restart.
All tests are performed on RanReal instance with n=960 and m=24

Inst. GVNS without restart GVNS with restart
 Best Worst Average Time Best Worst Average Time
1 1227100.66 1219482.15 1223016.96 487.41 1234250.65 1231618.31 1233060.24 598.63
2 1225827.52 1222346.79 1223591.46 506.97 1234270.24 1229926.25 1232227.12 598.08
3 1222255.02 1217975.21 1219958.91 441.99 1233449.04 1228500.63 1230290.44 596.60
4 1224430.75 1221272.56 1223042.71 520.18 1234128.75 1229089.85 1231650.62 598.59
5 1223264.49 1216268.87 1220081.21 522.75 1231449.40 1228681.93 1230390.78 598.34
6 1220233.04 1213424.31 1216473.92 434.20 1228508.07 1225002.23 1227408.62 599.22
7 1224728.65 1217371.11 1221595.41 530.00 1233944.50 1229588.32 1231708.07 598.73
8 1219956.60 1213306.64 1216684.82 508.56 1227800.50 1223997.87 1225626.77 598.05
9 1224978.46 1219785.72 1222278.05 413.52 1232149.20 1228155.81 1229949.28 598.79
10 1227047.80 1221932.72 1225050.13 538.63 1235071.88 1231252.82 1233442.31 596.32
Avg. 1223982.30 1218316.61 1221177.36 490.42 1232502.22 1228581.40 1230575.43 598.13

From the table, we conclude that restarting allows us to reach significantly better results.
In total, the average of the best results obtained by restarting is 0.69% better than the
average of the bests without restart (compare 1223982.30 with 1232502.22 of this
maximization problem).

 D. Urošević / Variable Neighborhood Search 31

3.5. Main computational results

Extensive testing of VNS was carried out on the Geo, RanReal and RanInt
instances with 120n ≥ . As before, 20 restarts were performed on each test instance. In
Tables 5 and 6, results on DGS and EGS instances are given, respectively. There VNS
results are compared with the state of the art heuristic methods: Genetic Algorithm
(LSGA), (Fan et al. [8]), and Tabu search based heuristic with strategic oscillation (SO)
(Gallego et al [11]). In order to save the space, we give average of the best obtained
solutions by corresponding methods on 10 test instances that have the same parameters.
Execution times are not reported, but for all methods the same time limits are used:

max 3t = seconds for instances with n=120, 20 seconds for instances with n=240, 120
seconds if n=480 and 600 seconds for instances with n=960. VNS parameters had the
following values: min max step2, 60, 2k k k= = = and rest 2n = .

Table 5. Comparison of the results obtained by LSGA, SO and VNS on DGS instances.

Type n Objective function value Percentual improvement
of GVNS

 LSGA SO GVNS LSGA SO
GEO 120 97999.08 98346.30 98863.27 0.87 0.52

240 316772.10 318601.53 319226.91 0.77 0.20
480 805860.40 810454.88 813046.48 0.88 0.32
960 2120184.24 2129246.04 2136374.79 0.76 0.33

RanInt 120 48578.80 49673.00 50101.40 3.04 0.86
240 154854.40 158005.20 159445.00 2.88 0.90
480 375525.20 384059.80 388167.20 3.26 1.06
960 1197463.80 1217303.60 1234104.80 2.97 1.36

RanReal 120 48510.03 49596.01 50028.62 3.04 0.86
240 155350.50 157670.80 159393.36 2.54 1.08
480 374379.24 382799.76 387802.26 3.46 1.29
960 1193044.24 1214489.86 1233366.77 3.27 1.53

Table 6. Comparison of the results obtained by LSGA, SO and VNS on EGS instances.

Type n Objective function value Percentual deviation over GVNS
 LSGA SO GVNS LSGA SO

GEO 120 88105.63 90229.35 90232.59 2.36 0.00
240 304291.82 304394.92 304415.73 0.04 0.01
480 773657.22 773877.11 773922.65 0.03 0.01
960 2072420.16 2072854.19 2072906.73 0.02 0.00

RanInt 120 46711.60 46963.20 47270.80 1.18 0.65
240 152203.40 153819.00 155387.80 2.05 1.01
480 368996.40 373689.20 377942.00 2.37 1.13
960 1184873.80 1202655.80 1214692.00 2.45 0.99

RanReal 120 46845.00 47035.06 47326.24 1.02 0.62
240 152519.75 153762.52 155188.43 1.72 0.92
480 367860.81 372950.14 377173.78 2.47 1.12
960 1183029.83 1199536.45 1213396.01 2.50 1.14

 D. Urošević / Variable Neighborhood Search 32

From these results, we can conclude that our VNS outperforms the best known methods
for solving Maximum Diversity Group Problem. For example, on the largest instances
VNS improves solutions obtained with Tabu search based heuristic (SO) for more than
1% on average. The improvement increases with the increase of the size of instances. So,
we can say that VNS is a robust method for solving MDGP. Note that our VNS uses
relatively small number of neighborhoods. Our future research will be devoted to
developing new neighborhood structures and involve them in both shaking
(diversification) and local search (intensification).

4. CONCLUSION

Here we develop a General VNS (GVNS) heuristic for solving the Maximum
Diversity Group Problem (MDGP). The Variable neighborhood descent (VND) based
local search uses two different neighborhood structures. Local search in these
neighborhoods is optimized by using appropriate data structures. Also, periodical restart
from the new solution is proposed and implemented. It is shown that this approach leads
to improvement of performances of the method and allows us to reach solutions for about
0.5% better than the solutions found by classical VNS.

Acknowledgement This work is supported by the Serbian Ministry for Education and
Science, Grants ON174010 and III44006.

REFERENCES

[1] Arani, T. and Lotfi V., “A three phased approach to final exam scheduling”, IIE Transactions,
21 (1989) 86-96.

[2] Bhadury, J., Mighty E. J. and Damar, H., “Maximizing workforce diversity in project teams:
A network flow approach”, Omega, 28 (2000) 143–153.

[3] Carrizosa, E., Mladenović, N. and Todosijević, R., “Sum-of-Squares Clustering on
Networks”, Yugoslav Journal Of Operations Research, 21 (2011) 157-161.

[4] Chen, C. C., “Placement and partitioning methods for integrated circuit layout”, Ph.D.
Dissertation, EECS Department, University of California, Berkeley (1986).

[5] Chen, Y., Fan, Z. P., Ma, J. and Zeng S., “A hybrid grouping genetic algorithm for reviewer
group construction problem”, Expert Systems with Applications, 38 (2011) 2401-2411.

[6] Desrosiers J, Mladenovic N and Villeneuve D., “Design of balanced MBA student teams”,
Journal of Operational Research Society, 56 (2005) 60-66.

[7] Falkenauer, E., Genetic Algorithms for Grouping Problems, Wiley: New York (1998).
[8] Fan, Z. P., Chen, Y., Ma, J. and Zeng, S., “A hybrid genetic algorithmic approach to the

maximally diverse grouping problem”, Journal of the Operational Research Society, 62
(2011) 92-99.

[9] Feo, T., Goldschmidt, O. and Khellaf, M. “One-half approximation algorithms for the k-
partition problem”, Operations Research, 40 (1992) S170-S173.

[10] Feo, T. and Khellaf, M., “A class of bounded approximation algorithms for graph
partitioning”, Networks, 20 (1990) 181-195.

[11] Gallego M., Laguna, M., Martí, R., Duarte, A., “Tabu search with strategic oscillation for the
maximally diverse grouping problem”, Journal of the Operational Research Society, 64 (5)
724-734.

[12] Glover, F., Kuo, C. C. and Dhir, K. S. “Heuristic algorithms for the maximum diversity
problem”, Journal of Information and Optimization Sciences, 19(1) (1998) 109–132.

 D. Urošević / Variable Neighborhood Search 33

[13] Hettich S. and Pazzani, M. J., “Mining for element reviewers: Lessons learned at the national
science foundation”, in: Proceedings of the KDD’06, ACM: New York, NY, 862–871.

[14] Ilić, A., Urošević, D., Brimberg, J. and Mladenović N., “A general variable neighborhood
search for solving the uncapacitated single allocation p-hub median problem”, European
Journal of Operational Research, 206 (2010) 289-300.

[15] Kral, J., “To the problem of segmentation of a program”, Information Processing Machines, 2
(1965) 116-127.

[16] Lotfi V. and Cerveny, R., “A final exam scheduling package”, Journal of the Operational
Research Society, 42 (1991) 205-216.

[17] Mingers, J. and O’Brien, F. A., “Creating students groups with similar characteristics: a
heuristic approach”, Omega, 23 (1995) 313-321.

[18] Mladenović, N., Todosijević, R. and Urošević, D., “An Efficient General Variable
Neighborhood Search for Large Traveling Salesman Problem With Time Windows”, Yugoslav
Journal Of Operations Research, 22 (2012) .

[19] Mladenović, N., Urošević, D., Perez-Brito, D. and Garcia-Gonzalez C.G., “Variable
neighbourhood search for bandwidth reduction”, European Journal of Operational Research,
200 (2010) 14-27.

[20] O’Brien, F. A. and Mingers, J., “The equitable partitioning problem: a heuristic algorithm
applied to the allocation of university student accommodation”, Warwick Business School,
Research Paper no. 187 (1995).

[21] Weitz, R. R. and Jelassi, M. T., “Assigning students to groups: a multi‐criteria decision
support system approach”, Decision Sciences, 23(3) (1992) 746-757.

[22] Weitz, R. R. and Lakshminarayanan, S., “On a heuristic for the final exam scheduling
problem”, Journal of the Operational Research Society, 47 (4) (1996) 599-600.

[23] Weitz, R. R. and Lakshminarayanan, S. “An empirical comparison of heuristic and graph
theoretic methods for creating maximally diverse groups, VLSI design, and exam scheduling”,
Omega, 25 (4) (1997) 473-482.

[24] Weitz, R. R. and Lakshminarayanan, S., “An empirical comparison of heuristic methods for
creating maximally diverse groups”, Journal of the Operational Research Society, 49 (6)
(1998) 635-646.

