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1. INTRODUCTION 

The maximum diverse grouping problem (MDGP) consists of finding a way to 
divide a set of n elements into m mutually disjoint groups so that the total diversity 
among the elements belonging to the same group is maximized. The diversity among the 
elements in a group is calculated as the sum of the individual distance between each pair 
of elements. The objective of the problem is to maximize the overall diversity, i.e., the 
sum of the diversity of all groups.  

Feo and Khellaf [10] proved that the MDGP is NP-hard.  The MDGP is also 
known as the k-partition problem (Feo et al. [9]), and the equitable partition problem 
(Mingers and O’Brien [17], O’Brien and Mingers [20]) that appears in a wide range of 
real life situations. The first application is in designing of VLSI circuits (Chen [4]; Feo 
and Khellaf [10]). Also, it can be applied in storing large programs onto paged memory 
(Kral, [15]), where the subroutines of a program have to be stored onto pages of available 
memory. In this case, the objective is to maximize data transfer between subroutines on 
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the same page (minimizing in this way data transfers between different pages). One of 
the most popular MDGP applications appears in academic context when forming student 
groups [20]. Specifically, in business schools, it is nowadays common to create diverse 
student workgroups or training teams in order to provide students with diverse 
environment [23]. Note that this type of student grouping problem is different from the 
one of making MBA student teams [6], where groups are supposed to be as similar as 
possible. In that way, the members of the same group diverse. Lofti and Cerveny [16] 
proposed Lofti-Cerveny (LC) method for minimizing (instead of maximizing) diversity 
in each group, which was also a part of a method for scheduling final exams. 

The MDGP can be applied in forming diverse groups of reviewers in scientific 
publications or project evaluation in scientific funding agencies [13]. Also, workforce 
diversity is an increasing phenomenon in organizations. Creating diverse groups where 
people with different background work together, is a way to deal with this heterogeneity 
and to facilitate their communication (Bhadury et al. [2]). 

 
1.1. Mathematical formulation 

There are two variants of the MDGP. The better known is (MDGP1), where all 
groups are forced to have the same number /k n m= of elements. The second variant, 
(MDGP2) allows the variable size of groups. So, the number gc  of elements in a group g 

can be in the interval ,g ga b⎡ ⎤⎣ ⎦ , where g ga b≤  for 1,2, ,g m= … . Obviously, (if we set 
/g ga b n m= =  for each g) MDGP1 problem is a special case of MDGP2 (). So, if we 

developed the method for solving MDGP2, the same method could also be used for 
solving MDGP1.  In the remainder, MDGP will refer to the general case MDGP2. Both 
variants can be formulated as quadratic integer programs. Denote with igx  ( 1,2, ,i n= …  
and 1,2, ,g m= … ) binary variables defined as follows: 

1,  if element  belongs to group 
0,  otherwiseig

i g
x

⎧
= ⎨
⎩

 

A quadratic integer programming formulation of MDGP2 is [8]: 
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Constraint (2) provides that each element i is included (distributed) in exactly 
one group. Constraints (3) and (4) provide that group g contains, at least ga , and gb  
elements at most.  
 

1.2. Previous work 

Arani and Lotfi [1] developed multistart algorithm. This procedure consists of a 
random construction followed by an improving phase that partially deconstructs the 
random solution, and examines all possible reconstructions in order to determine the best 
one. This process is repeated until no reconstructions giving a better solution  are found 
(i.e., when the current solution cannot be improved). Feo and Khellaf [10] proposed 
several heuristics based on graph theory. They considered the special case of even-sized 
groups, odd-sized groups, and groups having 2i  elements. The authors prove that this 
way obtained values are within a bounded percentage of the optimal solution.  

Weitz and Jelassi [21] developed a basic constructive heuristic (WJ). The idea is 
to avoid the assignment of very similar elements to belong to the same group. WJ first 
randomly assigns an element to the first group. The heuristic then selects the element 
with the smallest distance to the previously considered element and assigns it to the next 
group. When a sweep of all groups has been completed, the procedure goes back to the 
first group. The construction finishes when all the elements are assigned.  

Weitz and Lakshminarayanan [22] discovered and corrected the errors in the LC 
method. The modification of the LC method developed for the MDGP (LCW method) is 
presented by Weitz and Lakshminarayanan [23].  

Weitz and Lakshminarayanan in [23] made detailed experimentation to compare 
all heuristics for the MDGP known at that time. They conclude that the LCW heuristic is 
the best. The LCW is an improvement method that can start from a random solution or a 
solution generated with the Weitz-Jelassi. The authors did not find significant differences 
in solution quality when LCW was started from a random solution and when the WJ 
construction method was used to determine starting solution. They however concluded 
that there was significant difference in computational time. 

Fan et al. [8] presented a hybrid genetic algorithm (LSGA) for the solution of 
the MDGP. LSGA combines a genetic algorithm and a local search procedure. The 
genetic aspect of LSGA is based on the encoding scheme for grouping problems 
proposed by Falkenauer [7]. The local search within LSGA implements a best 
improvement strategy based on exchanging elements between groups. Fan et al.’s is the 
first publication that describes a method for the general version of the MDGP applicable 
to different group sizes. 

Gallego et al. [11] proposed Tabu Search for solving MDGP. The local search is 
based on exchanging elements between groups and moving one element from one to the 
other group. In order to avoid cycling, elements moved within any iteration can not be 
moved in the next TabuTenure (a parameter of method) iterations. Also, they allowed 
visiting cardinality-infeasible solution during the search. More precisely, they apply 
previously described Tabu Search in order to divide elements in a group so that each 
group g has at least ga k−  and at most gb k+  elements ( max1,2, ,k k= … ). After finishing 
the search, they repair the obtained local optima by moving elements from the groups 
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that have more than  gb  elements to the groups that have less than ga  elements. They 
call their method Tabu Search with Strategic Oscillation and denote it with SO. In this 
paper for the first time is suggested VNS based heuristic for maximum diversity grouping 
problem. 

The rest of the paper is organized as follows: In Section 2, we provide the 
detailed rules of General VNS (GVNS) heuristics for solving the MDGP. This includes a 
description of the Neighborhoods used within Variable neighborhood descent (VND). 
Section 3 gives a summary of computational results on several problem instances from 
the literature, and Section 4 concludes the paper. 

  
2. GENERAL VARIABLE NEIGHBORHOOD SEARCH FOR MDGP 

In this section, we describe the components of our GVNS heuristic: the solution 
space, the three local search neighborhoods used (Insertion, 2-opt and 3-opt), the shaking 
step, and our new GVNS algorithm.  

 
2.1. Solution space 

Solution space consists of all possible feasible divisions of elements into groups. 
A division is feasible if and only if each created group g contains at least ga  and at most 

gb  elements. Solution is represented with an array cx  of length n such that [ ]cx i  is the 
label of the group containing element i ( 1,2, ,i n= … ). In order to speedup local search, we 
also maintain matrix csd  such that [ ][ ]csd i g  is the sum of diversities between element i 
and all elements assigned to the group g in the current solution: 

[ ]
1,2, ,

[ ][ ]
c

c
ij

x j g
j n

sd i g d
=

=

= ∑
…

. 

Note that for the current solution, matrix sd can be computed in ( )2O n . 

2.2. VND Local Search 

The Local Search is organized as Variable Neighborhood Descent. The 
following neighborhoods are designed: Inseriont, Swap and 3-Chain. 
Neighborhood Insertion contains solutions obtained by moving only one element from 
the current group to the other group. By using previously described matrix csd , it is 
possible to efficiently compute, for each feasible move, the change of the objective 
function value. Denote with nx  the solution obtained form a solution cx  by moving 
element i from a group 1g  to a group 2g . In this case, the sum of diversities in all groups 
except the groups 1g  and 2g , are unchanged. The element i is removed from the group 

1g , and because of that, the sum of diversities in the group 1g  decreases for the sum of 
diversities between i and all other elements belonging to the group 1g . Element i is 
inserted into 2g , hence, the sum of diversities in 2g  increases for all diversities between i 
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and elements belonging to the group 2g . It is easy to conclude that the difference 

between objective function values for solutions cx  and nx  is    

2 1( ) ( ) [ ][ ] [ ][ ]n c c cf f x f x sd i g sd i gΔ = − = − . 

If we perform Insertion step, we change the current solution and then it is 
necessary to update matrix sd. If the element i moves from the group 1g  to the group 2g , 

then groups 1g  and 2g  are modified and values 1[ ][ ]csd j g  and 2[ ][ ]csd j g  must be 
updated in the following way 

1 1[ ][ ] [ ][ ] [ ][ ]c csd j g sd j g d j i= −   

and  

2 2[ ][ ] [ ][ ] [ ][ ]c csd j g sd j g d j i= + . 

Since this updating must be performed for each element j, updating of matrix sd after 
performing Insertion move has the complexity ( )O n . On the other hand, the cardinality 
of Insertion neighborhood is ( )O nm .  

Neighborhood Swap contains solutions obtained by swapping pair of elements 
belonging to different groups (elements exchange the group currently assigned to). Let an 
element i be in a group ig  and an element j in a group jg  in the current solution cx . 

Denote with nx  solution obtained after moving element i into group jg  and element j 
into group ig . Since the element i is removed from the group ig , the diversities between 
element i and elements remaining in the group ig  do not contribute to objective function 
value of a new solution. But, because the element i is inserted in the group jg , all 
diversities between i and the elements belonging to the group jg  contribute to objective 
function value of a new solution. Similar facts are true for the element j. So, we can 
finally calculate difference between objective value for a new and for the old solutions: 

( ) ( )( ) ( ) [ ][ ] [ ][ ] [ ][ ] [ ][ ] 2 [ ][ ]n c c c c c
j i i jf f x f x sd i g sd i g sd j g sd j g d i jΔ = − = − + − −  

It is obvious that the change in objective value for each solution from neighborhood 
Swap is done in (1)O . Cardinality of Swap is ( )2O n . After performing Seap move, it is 

necessary to update the matrix sd, and complexity of this update is ( )O n  (we can 
consider 2-opt as two successive Insertions). 

One 3-Chain move is determined by three elements i, j and k belonging to three 
different groups: ig , jg  and kg , respectively, and by moving the element i to the group 

jg , the element j to the group kg  and the element k to the group ig . Neighborhood 3-
Chain consists of solution obtained by performing 3-Chain move. 
If we denote with cx  and nx  solutions before and after the move, we can calculate the 
difference between objective function values as follows: 
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So, complexity of solution checking is (1)O , but complexity (cardinality) of the whole 
neighborhood is 3( )O n . 
We develop two variants of variable neighborhood descent: 

• VND-2 – use neighborhoods Insertion and Swap, in this order 
• VND-3 – use all three developed neighborhoods in the following order: 

Insertion, Swap, 3-Chain. 
 

2.3. Initial solution 

Calculation of an initial solution is done in two phases. First, we ensure that 
each group g contains at least ga  elements by inserting the chosen elements. In the 
second phase, we distribute the remaining elements so that each group g contains at most 

gb  elements. At the beginning, we select m elements at random and insert them into 
different groups. 

Denote with gE  a set of elements currently assigned to a group g. During the 
first phase, we maintain the set of groups that have fewer elements than the desired 
minimum: 

{ }' : g gG g E a= <  

 Each iteration of the first phase consists of selecting at random one unassigned 
element, denoted with i, and assigning it to a selected group. The selected element must 
be inserted into one of the groups from the set G’. So, for each group 'g G∈  , we 
calculate average distance between the selected element i and all the elements belonging 
to the group g, and select the group whose average distance value is maximal. The 
selected group g is one for which expression igD  defined as 

g

ij
j E

ig
g

d

D
E

∈
=

∑
 

is maximized.  
The first phase ends when the set G’ becomes empty. During the second phase, 

we maintain a set of groups that have fewer elements than the desired maximum: 

{ }' : g gG g E b= < . 

All other steps of the second phase are the same. The second phase finishes when all 
elements have been assigned. 
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 The initial solution can also be created at random: instead of assigning a 
selected element to a group with maximal average distance, we assign it to a randomly 
selected group. 
 
2.4. Shaking 

In order to perform perturbation of the incumbent solution, we define kth 

neighborhood as a set of solutions obtained by k consecutive Swap moves. Thus, in the 
Shaking step, we generate a random solution from the kth neighborhood of the current 
solution by performing k random Swap moves. In each move i, 1, ,i k= … , we randomly 
select two elements that belong to two different groups. 
  
2.5. GVNS for MDGP 

Variable Neighborhood Search combines previously described VND and the 
Shaking step. We propose small modification of the basic VNS: during execution, we 
periodically restart VNS search starting from the new initial solution. The new initial 
solution created each time when the neighborhood counter k reaches the maximal 
allowed value ( maxk ) restn times. The number restn  is a parameter of the method and in 
our experiments is set to 2. Similar modification of the basic VNS may be seen in [19]. 
Pseudocode for GVNS is given in Figure 1. 
program GVNS(xopt, kmin, kmax, kstep, tmax, nrest) 
  x := InitialSoution; 
  x := VND(x); 
  xopt := x; 
  k := kmin; 
  niter := 0; 
  while RunningTime < tmax do 
    x’ := Shake(x, k); 
    x’’ := VND(x’) 
    if f(x’’) > f(x) then 
      x := x’’; k := kmin; 
    else 
      k := k + kstep; 
      if k > kmax then 
        niter := niter+1; 
        if niter = nrest then  
          if f(x) > f(xopt) then xopt := x; 
          x := IniitalSolution; 
          niter := 0; 
        endif 
        k := kmin; 
      endif 
    endif 
  endwhile 
 

 
 



 D. Urošević / Variable Neighborhood Search 28 

3. COMPUTATIONAL RESULTS 

In this section the computational results of the proposed GVNS heuristics and a 
comparison with existing algorithms are given. The proposed method is implemented in 
C++ programming language. All computations are performed on computer based on Intel 
Pentium Core Duo (2.66GHz) with 6GB RAM, running the Linux operating system. 

 
3.1. Test instances   

We used 480 instances in our experimentation. This benchmark set of instances, 
referred to as MDGPLIB, is available at http://www.optsicom.es/mdgp. The set is 
divided into three subsets: 

1. RanReal — This set consists of 160 instances in which the distance values ijd  
are real numbers generated by using a Uniform distribution U(0,100). The number of 
elements n, the number of groups m and the limits of each group size ga  and  gb  are 
shown in Table 1. There are 20 instances for each combination of parameters (i.e., each 
row in Table 1): 10 for instances with equal group size (EGS), and 10 for instances with 
different group size (DGS). For the 10 instances in EGS, the group size is equal for all 
instances and is calculated as /n m⎢ ⎥⎣ ⎦ . For the 10 instances in DGS, the limits of each 

group ( ga  and gb ) for each instance are generated randomly in the predefined interval. 

That is, the value of ga  is generated in the interval min max,g ga a⎡ ⎤⎣ ⎦  and the value of gb  is 

generated in the interval min max,g gb b⎡ ⎤⎣ ⎦ . This data set was introduced by Fan et al. [8] with 

n ranging from 10 to 240. Gallego at al. [11] have generated larger instances with 
480n = and 960n = . 

Table 1. Summary of value of parameters used to generate instances 
n m g ga b=  min

ga  max
ga  min

gb  max
gb  

10 2 5 3 5 5 7 
12 4 3 2 3 3 5 
30 5 6 5 6 6 10 
60 6 10 7 10 10 14 

120 10 12 8 12 12 16 
240 12 20 15 20 20 25 
480 20 24 18 24 24 30 
960 24 40 32 40 40 48 

 
2. RanInt — This set has the same structure and size as RanReal (shown in 

Table 1) but distances are generated with an integer Uniform distribution (0,100)U . 
3. Geo — This set follows the same structure and size as the previous two, 

however, distance values are calculated as Euclidean distances between a pair of points 
with coordinates randomly generated in [0,10]. The number of coordinates for each 
instance is generated randomly in the range 2 to 21. Glover et al. [12] introduced this 
generator for the Maximum Diversity Problem. 
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3.2. Local Search 

In the first series of experiments, we compare local searches in the three defined 
neighborhood structures together with the two VND procedures. First, we examine the 
test case with n=960 and m=24 (different group sizes variant). One thousand initial points 
are generated by using greedy procedure described above, and a local search is performed 
from each one in each type of neighborhood. For each local optima obtained by local 
search, percentual deviation over the best known solution (obtained by GVNS) is 
calculated. In Table, 2 we give the summarized results. For each neighborhood (i.e. 
corresponding Local search) minimal, maximal, and average deviation is shown. Also, 
the average computational time is given.  

 
Table 2. Comparison of local searches on RanReal instance with n=960 and m=24 
Local  
Search 

Percentual deviation 
over best 

Time 

Min Max Avg 
Insertion 6.64 9.59 8.45 0.03 
Swap 2.12 3.67 2.70 0.12 
3-Chain 1.64 3.35 2.21 58.58 
VND-2 1.01 2.49 1.47 0.15 
VND-3 0.39 2.28 0.87 23.20 
 
We observe that 

• Local search in neighborhood 3-Chain produce better solutions than the local 
search in Swap, but average execution time is significantly longer (0.12 sec vs 
58.58 sec). 

• VND-2 as a local search gives better results than Local Search in any single 
neighborhood explored. As in the other problems (see e.g. [14]), VND-2 gives 
better results than local search in 3-Chain; however VND-2 is significantly 
faster. 

• VND-3 local search gives the best results, but the execution times are very long. 
Based on this analysis, we decided to use VND-2 as Local Search within GVNS. 
 
3.3. Initial Solution 

           The second experiment is dedicated to comparing methods for generating the 
initial solution. We propose two methods for computing an initial solution: greedy and 
random. One thousand random initial solutions were generated and local search was 
performed on each of them. Similarly, one thousand greedy initial solutions were 
produced and then the local search performed. Table 3 summarizes the results obtained.  
For each neighborhood minimal, maximal and average percentual deviation of local 
optima over the best known is given. From this Table, we conclude that the results 
obtained by local search from greedy initial solution in each type of neighborhood is 
better than the results produced by local search from the random initial solution. Also, the 
execution times for local search that start from random solutions are longer. Based on 
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these results, we decided to use greedy initial solution as the initial solution within our 
GVNS.  
 
Table 3. Influence of the initial solution to local search. All tests are performed on 
RanReal instance with n=960 and m=24 
 Random Initial Greedy Initial 
 Percentual deviation Time Percentual deviation Time 
 Min Max Avg  Min Max Avg  
Insertion 9.55 16.05 13.29 0.04 6.64 9.59 8.45 0.03 
Swap 3.19 4.55 3.92 0.21 2.12 3.67 2.70 0.12 
3-Chain 2.78 3.86 3.37 110.34 1.64 3.35 2.21 58.58 
VND-2 2.02 3.18 2.60 0.24 1.01 2.49 1.47 0.15 
VND3 1.33 2.66 2.00 33.47 0.39 2.28 0.87 23.20 
 
3.4. Importance of “restarting” search within GVNS 

As we have said in the previous sections, we modify the basic VNS, and during 
the complete GVNS, we periodically restart search from new greedy initial solution. In 
the next experiment, we compare classical GVNS and the variant with periodical restart. 
We tested these two variants on 10 DFS (different groups sizes) instances with n=960 
elements and m=24 groups. Both methods were executed 20 times for each instance. In 
both methods, the same values for the parameters were used: min max step2, 60, 2k k k= = =  
and rest 2n = .Table 4 reports the following: the best results obtained by the corresponding 
method, the worst results obtained by the corresponding method, and the average results.    
 
Table 4. Comparing GVNS without periodical restart and GVNS with periodical restart. 
All tests are performed on RanReal instance with n=960 and m=24 
 
Inst. GVNS without restart GVNS with restart 
 Best Worst Average Time Best Worst Average Time 
1 1227100.66 1219482.15 1223016.96 487.41 1234250.65 1231618.31 1233060.24 598.63 
2 1225827.52 1222346.79 1223591.46 506.97 1234270.24 1229926.25 1232227.12 598.08 
3 1222255.02 1217975.21 1219958.91 441.99 1233449.04 1228500.63 1230290.44 596.60 
4 1224430.75 1221272.56 1223042.71 520.18 1234128.75 1229089.85 1231650.62 598.59 
5 1223264.49 1216268.87 1220081.21 522.75 1231449.40 1228681.93 1230390.78 598.34 
6 1220233.04 1213424.31 1216473.92 434.20 1228508.07 1225002.23 1227408.62 599.22 
7 1224728.65 1217371.11 1221595.41 530.00 1233944.50 1229588.32 1231708.07 598.73 
8 1219956.60 1213306.64 1216684.82 508.56 1227800.50 1223997.87 1225626.77 598.05 
9 1224978.46 1219785.72 1222278.05 413.52 1232149.20 1228155.81 1229949.28 598.79 
10 1227047.80 1221932.72 1225050.13 538.63 1235071.88 1231252.82 1233442.31 596.32 
Avg. 1223982.30 1218316.61 1221177.36 490.42 1232502.22 1228581.40 1230575.43 598.13 
 
From the table, we conclude that restarting allows us to reach significantly better results. 
In total, the average of the best results obtained by restarting is 0.69% better than the 
average of the bests without restart (compare 1223982.30 with 1232502.22 of this 
maximization problem). 
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3.5. Main computational results 

Extensive testing of VNS was carried out on the Geo, RanReal and RanInt 
instances with 120n ≥ . As before, 20 restarts were performed on each test instance. In 
Tables 5 and 6, results on DGS and EGS instances are given, respectively. There VNS 
results are compared with the state of the art heuristic methods: Genetic Algorithm 
(LSGA), (Fan et al. [8]), and Tabu search based heuristic with strategic oscillation (SO) 
(Gallego et al [11]). In order to save the space, we give average of the best obtained 
solutions by corresponding methods on 10 test instances that have the same parameters. 
Execution times are not reported, but for all methods the same time limits are used: 

max 3t =  seconds for instances with n=120, 20 seconds for instances with n=240, 120 
seconds if n=480 and 600 seconds for instances with n=960. VNS parameters had the 
following values: min max step2, 60, 2k k k= = =  and rest 2n = . 
 
Table 5. Comparison of the results obtained by LSGA, SO and VNS on DGS instances.  
 

Type n Objective function value Percentual improvement  
of GVNS 

  LSGA SO GVNS LSGA SO 
GEO 120 97999.08 98346.30 98863.27 0.87 0.52 

240 316772.10 318601.53 319226.91 0.77 0.20 
480 805860.40 810454.88 813046.48 0.88 0.32 
960 2120184.24 2129246.04 2136374.79 0.76 0.33 

RanInt 120 48578.80 49673.00 50101.40 3.04 0.86 
240 154854.40 158005.20 159445.00 2.88 0.90 
480 375525.20 384059.80 388167.20 3.26 1.06 
960 1197463.80 1217303.60 1234104.80 2.97 1.36 

RanReal 120 48510.03 49596.01 50028.62 3.04 0.86 
240 155350.50 157670.80 159393.36 2.54 1.08 
480 374379.24 382799.76 387802.26 3.46 1.29 
960 1193044.24 1214489.86 1233366.77 3.27 1.53 

 
Table 6. Comparison of the results obtained by LSGA, SO and VNS on EGS instances.  
 

Type n Objective function value Percentual deviation over GVNS 
  LSGA SO GVNS LSGA SO 

GEO 120 88105.63 90229.35 90232.59 2.36 0.00 
240 304291.82 304394.92 304415.73 0.04 0.01 
480 773657.22 773877.11 773922.65 0.03 0.01 
960 2072420.16 2072854.19 2072906.73 0.02 0.00 

RanInt 120 46711.60 46963.20 47270.80 1.18 0.65 
240 152203.40 153819.00 155387.80 2.05 1.01 
480 368996.40 373689.20 377942.00 2.37 1.13 
960 1184873.80 1202655.80 1214692.00 2.45 0.99 

RanReal 120 46845.00 47035.06 47326.24 1.02 0.62 
240 152519.75 153762.52 155188.43 1.72 0.92 
480 367860.81 372950.14 377173.78 2.47 1.12 
960 1183029.83 1199536.45 1213396.01 2.50 1.14 
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From these results, we can conclude that our VNS outperforms the best known methods 
for solving Maximum Diversity Group Problem. For example, on the largest instances 
VNS improves solutions obtained with Tabu search based heuristic (SO) for more than 
1% on average. The improvement increases with the increase of the size of instances. So, 
we can say that VNS is a robust method for solving MDGP. Note that our VNS uses 
relatively small number of neighborhoods. Our future research will be devoted to 
developing new neighborhood structures and involve them in both shaking 
(diversification) and local search (intensification). 
 

4. CONCLUSION 

Here we develop a General VNS (GVNS) heuristic for solving the Maximum 
Diversity Group Problem (MDGP). The Variable neighborhood descent (VND) based 
local search uses two different neighborhood structures. Local search in these 
neighborhoods is optimized by using appropriate data structures. Also, periodical restart 
from the new solution is proposed and implemented. It is shown that this approach leads 
to improvement of performances of the method and allows us to reach solutions for about 
0.5% better than the solutions found by classical VNS.    
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