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1. INTRODUCTION

In the study of vector optimization, the theory of efficiency plays an important
role. Kuhn and Tucker [8] and later Geoffrion [6] observed that certain efficient
points exhibit some abnormal properties and to eliminate such anomalous so-
lutions in large set of efficient solutions, they introduced the concept of proper
efficiency. Borwein [2] and Benson [1] proposed proper efficiency for vector

∗Corresponding author



388 S. K. Suneja, M. Sharma / Strict Benson Proper-ε-Efficiency

maximization problem over cones. Chen and Rong [4] and Li [9] gave characteri-
zation of Benson proper efficiency for vector optimization problems. Cheng and
Fu [5] introduced the concept of strong efficiency in locally convex spaces. Vari-
ous authors have studied approximate efficient solutions for vector optimization
problems. Some of them are Liu [11], Chen and Huang [3] and Rong and Wu
[12]. Li, Xu and Zhu [10] introduced ε-strictly efficient solutions for set-valued
optimization problem.

The purpose of this paper is to introduce the notion of Strict
Benson proper-ε-efficient solution for vector optimization problems with set-
valued maps as a generalization of Benson proper efficient solution [1]. We study
the relationship of Strict Benson proper-ε-efficient solution with ε-strict efficient
solution given by Li et al. [10]. An alternative theorem is presented in section 3
for ic-cone-convexlikeness set-valued maps, which were introduced by Sach [13],
and scalarization theorems and ε-Lagrangian Multiplier theorems are established
in sections 4 and 5.

2. DEFINITIONS AND NOTATIONS

Let X be locally convex topological vector space and Y, Z be real locally convex
Hausdorff topological vector spaces; let D ⊂ Y, E ⊂ Z be pointed closed convex
cones. For a set A ⊂ Y, we write cone A = {λa : λ ≥ 0, a ∈ A}.
The closure and interior of the set A are denoted by cl A and int A. A convex
subset B of cone A is a base of A if 0 < cl B and A = cone B. Let Y∗ be the dual
space of Y, the positive dual cone D∗ of D ⊂ Y is defined as D∗ = { f ∈ Y∗ : f (y) ≥ 0
for all y ∈ D}. The set D# of strictly positive functions is defined as
D# = { f ∈ Y∗ : f (y) > 0 for all y ∈ D \ {0}}.
For a set-valued map F : X → 2Y the domain of F, denoted by dom F, is defined
as dom F = {x ∈ X : F(x) , ϕ}, and the image of F, denoted as imF, is defined as
imF = F(X) =

∪
x∈X F(x).

Benson [1] introduced the following definition of proper efficiency.

Definition 2.1. If S is non empty set in Y and D is a convex cone in Y, then y ∈ S
is called Benson proper efficient point of S over D written as y ∈ BPMin[S,D] if
clcone(S +D − y) ∩ (−D) = {0} (1)

Now we introduce the notion of Strict Benson proper-ε-efficient point of a set S
over a cone D.

Definition 2.2. Let S be a non empty set in Y, D be a convex cone in Y and ε ∈ D,
then ȳ ∈ S is called a Strict Benson proper-ε-efficient point of S over D written as
ȳ ∈ BP-ε-Min[S,D] if clcone(S + ε − ȳ) ∩ (−D \ {0}) = ϕ . (2)
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It is easy to verify that BPMin[S,D] ⊂ BP-ε-Min[S,D].

The following example illustrates the proper containment, that is, there exists
ȳ < BP-ε-Min[S,D] but ȳ ∈ BPMin[S,D].

Example 2.3. Let Y = R2, D = {(x, y) : x ≤ y, y ≥ 0}, ε =
(

3
2 ,

3
2

)
,

S =
{(

1
2 ,

3
4

)
,
(

5
4 , 1
)
,
(

5
2 ,

5
2

)
, (1, 1)

}
, ȳ = (1, 1), then S+ε−ȳ =

{(
1, 5

4

)
,
(

7
4 ,

3
2

)
, (3, 3),

(
3
2 ,

3
2

)}
and clcone(S + ε − ȳ) ∩ (−D \ {0}) = ϕ .
Thus, ȳ ∈ BP-ε-Min[S,D].
Also, S − ȳ =

{(
−1
2 ,
−1
4

)
,
(

1
4 , 0
)
,
(

3
2 ,

3
2

)
, (0, 0)

}
which shows that

(
−1
2 ,
−1
4

)
∈ clcone(S +

D − ȳ) ∩ (−D \ {0}) and clcone(S +D − ȳ) ∩ (−D \ {0}) , ϕ.
Thus, ȳ < BP-ε-Min[S,D].

Li, Xu and Zhu [10] introduced ε-strictly minimal efficient point which is defined
as follows.

Definition 2.4. Let S be a non empty subset of Y, D be a convex cone in Y, B be a
base of D, ε ∈ D, then ȳ ∈ S is called an ε-strictly minimal efficient point of S with
respect to B, written as ȳ ∈ ε-Fmin[S,B] if there is a neighborhood U of 0 such that
clcone(S + ε − ȳ) ∩ (U − B) = ϕ (3)

It is shown in the following theorem that every ε-strict minimal efficient point of
S with respect to B is Strict Benson proper-ε-efficient point of S over D.

Theorem 2.5. ε-Fmin[S,B] ⊂ BP-ε-Min[S,D].

Proof. Let ȳ ∈ ε-Fmin[S,B], which implies that there is neighborhood U of 0 such
that clcone(S + ε − ȳ) ∩ (U − B) = ϕ.
Now, to show ȳ ∈ BP-ε-Min[S,D], we have to prove clcone(S+ε− ȳ)∩(−D\{0}) = ϕ.
On the contrary, suppose that there exists y∗ ∈ clcone(S + ε − ȳ) ∩ (−D \ {0}). It
follows that y∗ ∈ clcone(S+ ε− ȳ) and y∗ ∈ (−D \ {0}), which gives that y∗ = −d, for
d ∈ D \ {0}. Since B is a base of D, therefore D = cone B, which gives that d = λb,
for λ ≥ 0, b ∈ B. It follows that y∗ = −d = −λb.
Clearly, y∗

λ = −b ∈ (U−B) and also, y∗

λ ∈ clcone(S+ ε− ȳ). Thus, y∗

λ ∈ clcone(S+ ε−
ȳ) ∩ (U − B), which gives a contradiction.

Remark 2.6. The following example illustrates that the set of Strict
Benson proper-ε-efficient points is not contained in the set of ε-strictly minimal
efficient points.

Example 2.7. Let Y = R2, S =
{(
−1
2 ,

1
2

)
,
(
−2, 3

4

)
,
(
−1
10 ,

3
2

)}
, D = {(x, y) : x ≤ 0, y ≤ 0},

B = {(x, y) : x + y + 1 = 0, x ≤ 0, y ≤ 0} be a base of cone D, ε =
(
−1
2 , 0
)
, ȳ =

(
−1
2 ,

1
2

)
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and U = {(x, y) : x2 + y2 < 1
4 }, then S + ε − ȳ =

{(
−1
2 , 0
)
,
(
−2, 1

4

)
,
(
−1
10 , 1
)}

and
clcone(S + ε − ȳ) ∩ (−D \ {0}) = ϕ, which gives that ȳ ∈ BP-ε-Min[S,D].
Also,

(
−1
10 , 1
)
∈ clcone(S+ε− ȳ)∩ (U−B), which shows that ȳ < ε-Fmin[S,B]. Thus

BP-ε-Min[S,D] 1 ε-Fmin[S,B].

3. THEOREM OF ALTERNATIVE

A theorem of the alternative will be established in this section for ic-D-convexlike
set-valued maps, which were introduced by Sach [13] and are defined as follows.

Definition 3.1. A set-valued map F : X → 2Y is called ic-D-convexlike on X if
intcone(F(X) +D) is a convex cone and F(X) +D ⊂ clintcone(F(X) +D).

Theorem 3.2. Let int D , ϕ and let the set-valued map F : X → 2Y be ic-D-
convexlike on X then, one and only one of the following statements is true:
(I) there exists x ∈ X such that F(x) ∩ (− int D) , ϕ
(II) there exists µ ∈ (D∗ \ {0}) such that µ(y) ≥ 0, for all y ∈ F(X).

Proof. Assume that both (I) and (II) hold. Then there exist x ∈ X, y ∈ F(x) such
that y ∈ − int D, which gives that µ(y) < 0 for every µ ∈ D∗ \ {0}. This contradicts
(II). Thus (I) and (II) cannot hold simultaneously.
Now, we show that if (I) is not true, then (II) holds.
Suppose that F(X) ∩ (− int D) = ϕ. (4)
Now we claim that intcone(F(X)+D)∩(− int D) = ϕ. Indeed, let y∗ ∈ intcone(F(X)+
D)∩(− int D), then there exist x ∈ X, d ∈ D,λ > 0 such that y∗ = λ(F(x)+d) ∈ − int D,
which gives that y∗

λ − d ∈ F(x). Since y∗ ∈ − int D, λ > 0 therefore, y∗

λ ∈ − int D,
which implies that y∗

λ −d ∈ − int D. Thus, y∗

λ −d ∈ F(X)∩(− int D), which contradicts
(4).
By the assumption F is ic-D-convexlike on X, we have that intcone(F(X) +D) is a
convex cone. Thus, by separation theorem for convex sets in topological vector
spaces as given by Jahn [7], there exists µ ∈ Y∗ \ {0} such that
µ(y + td) ≥ 0 for all y ∈ F(X), d ∈ D and t > 0. (5)
We assert that µ(d) ≥ 0 for all d ∈ D otherwise, suppose that there exists d̄ ∈ D
with µ(d̄) < 0. Then we will have µ(y + td̄) = µ(y) + tµ(d̄) < 0, for given y and
sufficiently large t, which contradicts (5). Thus, µ ∈ D∗ \ {0}. Letting t→ 0 in (5),
we obtain µ(y) ≥ 0 for all y ∈ F(X). This implies that (II) is true.

4. SCALARIZATION

We consider the following set-valued optimization problem:
(VP) D-min

x∈X0
F(x)

s.t. G(x) ∩ (−E) , ϕ
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where X0⊂X is a nonempty set, E⊂Z is a pointed closed convex cone, −E= {−x :
x∈E}, F : X0 → 2Y, G : X0 → 2Z are set-valued maps. The set of feasible solutions
of (VP) is denoted by V = {x ∈ X0 : G(x) ∩ (−E) , ϕ}.

We now introduce Strict Benson proper-ε-efficient solution of (VP).

Definition 4.1. A point x̄ ∈ V is said to be Strict Benson proper-ε-efficient solution
of (VP) if F(x̄) ∩ BP-ε-Min[F(V),D] , ϕ.
A pair (x̄, ȳ) is said to be Strict Benson proper-ε-minimizer of (VP) if ȳ ∈ F(x̄) ∩
BP-ε-Min[F(V),D].

Corresponding to the set-valued optimization problem (VP), we associate the
following scalar optimization problem:
(SP)µ min

x∈V
(µF)(x)

where µ ∈ D∗ \ {0}

Definition 4.2. Let x̄ ∈ V, ȳ ∈ F(x̄), then x̄ is said to be an ε-minimal solution of
(SP)µ, if µ(ȳ) ≤ µ(y) + µ(ε) for all y ∈ F(V) and (x̄, ȳ) is said to be an ε-rninimizer
pair of (SP)µ.

The fundamental results characterizing Strict Benson proper-ε-minimizer of (VP)
in terms of ε- minimizer of (SP)µ are now discussed.

Theorem 4.3. Let µ ∈ D# be fixed. If (x̄, ȳ) is an ε-minimizer pair of (SP)µ, then
(x̄, ȳ) is a Strict Benson proper-ε-minimizer pair of (VP).

Proof. Since (x̄, ȳ) is an ε-minimizer of (SP)µ, therefore
µ(ȳ) ≤ µ(y) + µ(ε), for all y ∈ F(V). (6)
Now, we shall show that (x̄, ȳ) is a Strict Benson proper-ε-minimizer pair of (VP).
It is enough to show that, clcone(F(V) + ε − ȳ) ∩ (−D \ {0}) = ϕ . Indeed, if there
exists y∗ ∈ clcone(F(V) + ε − ȳ) ∩ (−D \ {0}), then, there exist {yn} ⊂ F(V) and
{λn} ⊂ R+ such that y∗ = lim

n→∞
λn(yn + ε − ȳ) and y∗ ∈ −D \ {0}

By using (6), we have µ(y∗) = lim
n→∞

λnµ(yn + ε − ȳ) ≥ 0 (7)

Since µ ∈ D# and y∗ ∈ −D \ {0}, therefore µ(y∗) < 0, which contradicts (7).
Thus, we conclude (x̄, ȳ) is a Strict Benson proper-ε-minimizer pair of (VP).

Below we give an example to illustrate the above theorem.

Example 4.4. Let X = R, Y = R2, Z = R2 and D = {(x, y) : x ≥ y, y ≥ 0},
E = {(x, y) : y ≥ x, x ≤ 0} and ε =

(
1
2 ,

1
2

)
.
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Define F : X → 2Y, as F(x) =

[0, 1] × [0, 1] if x ≥ 0
[0, x2] × [0, x2] if x < 0

and define G : X → 2Z, as

G(x) =


(
[0, x], x

2

)
if x ≥ 0

[−2,−1] × [−2,−1] if x < 0
The feasible set of the problem (VP) is V = {x : x ≥ 0}.
Let µ =

(
3
2 ,

3
2

)
∈ D#, x̄ = 1 and ȳ =

(
1
2 , 0
)
∈ F(x̄).

Then, F(V) = [0, 1]×[0, 1], µ(ȳ) = 3
4 , µ(ε) = 3

2 andµ(ȳ) ≤ µ(y)+µ(ε), for all y ∈ F(V),
which implies that, (x̄, ȳ) is an ε-minimizer pair of (SP)µ.
Since ε − ȳ =

(
0, 1

2

)
, therefore clcone(F(V) + ε − ȳ) ∩ (−D \ {0}) = ϕ.

Thus, (x̄, ȳ) is a Strict Benson proper-ε-minimizer pair of (VP).

Theorem 4.5. Let F̄ : X → 2Y be defined as F̄(x) = F(x) + ε − ȳ for all x ∈ X and
F̄ be ic-D-convexlike on V. If (x̄, ȳ) is a Strict Benson proper-ε-minimizer pair of
(VP), then there exists µ ∈ D∗ \ {0} such that (x̄, ȳ) is an ε-minimizer pair of (SP)µ.

Proof. Let (x̄, ȳ) be a strict Benson proper-ε-minimizer pair of (VP). Then x̄ ∈ V and
ȳ ∈ F(x)∩BP-ε-Min[F(V),D], which gives that clcone(F(V)+ε− ȳ)∩ (−D\ {0}) = ϕ.
It follows that (F(V) + ε − ȳ) ∩ (− int D) = ϕ.
By assumption F̄ is ic-D-convexlike on V, then by Theorem 3.1 there exists µ ∈
D∗ \ {0} such that µ(z) ≥ 0 for all z ∈ F̄(V), which gives that µ(y + ε − ȳ) ≥ 0, for all
y ∈ F(V).
Thus, µ(y) + µ(ε) ≥ µ(ȳ), for all y ∈ F(V). Hence, (x̄, ȳ) is an ε-minimizer pair of
(SP)µ.

5. ε-LAGRANGIAN MULTIPLIER THEOREMS

In this section we present two ε-Lagrangian Multiplier theorems which show that
a Strict Benson proper-ε-minimizer of the constrained set-valued vector optimiza-
tion problem (VP) is exactly a Strict Benson proper-ε-minimizer for an appropriate
unconstrained set-valued vector optimization problem under certain conditions.
Let L(Z,Y) be the space of continuous linear operators from Z to Y,
and let L+(Z,Y) = {T ∈ L(Z,Y) : T(E) ⊂ D}.
Denote by (F,G) the set-valued map from X to Y × Z defined by (F,G)(x) = F(x) ×
G(x), for all x ∈ X.
If µ ∈ Y∗, T ∈ L(Z,Y), we define µF : X→ 2R and F + TG : X→ 2Y as
(µF)(x) = µ(F(x)) and (F + TG)(x) = F(x) + T(G(x)), respectively.
The set-valued Lagrange map of (VP), L : X0 × L+(Z,Y)→ 2Y is defined as
L(x,T) = F(x) + T(G(x)), where (x,T) ∈ X0 × L+(Z,Y).

We consider the following unconstrained set-valued minimization problem asso-
ciated with (VP) for a fixed T ∈ L+(Z,Y)
(VP)T D-min

x∈X0
L(x,T)
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Sach [13] gave the following result for ic-cone convexlike set-valued maps.

Lemma 5.1. Let intcone(imF+D) , ϕ, then F is an ic-D-convexlike if and only if
k intcone(imF+D) + (1 − k) cone(imF+D) ⊂ intcone(imF+D), for all k ∈ (0, 1).

We establish the following result by using the above lemma.

Lemma 5.2. If (F,G) is ic-D-convexlike on X and intcone(im(F,G) + D × E) , ϕ
then for µ ∈ D∗ \ {0}, (µF,G) is ic-(R+ × E)-convexlike on X.

Proof. Let (F,G) be ic-D-convexlike on X. Then by using Lemma 5.1
k(intcone(imF+D), intcone(imG+E)) + (1 − k)(cone(imF+D), cone(imG+E)) ⊂
(intcone(imF+D), intcone(imG+E)), for all k ∈ (0, 1) which gives that
k intcone(imF+D) + (1 − k) cone(imF+D) ⊂ intcone(imF+D), for all k ∈ (0, 1) and
k intcone(imG+E) + (1 − k) cone(imG+E) ⊂ intcone(imG+E), for all k ∈ (0, 1).
Now, it is enough to show k intcone(imµF + R+) + (1 − k) cone(imµF + R+) ⊂
intcone(imµF +R+), for all k ∈ (0, 1).
Let y∗ ∈ k intcone(imµF +R+) + (1 − k) cone(imµF +R+), then there exists λ1 > 0,
λ2 ≥ 0, x1, x2 ∈ X, y1 ∈ F(x1), y2 ∈ F(x2) and r1, r2 ∈ R+ such that y∗ = kλ1(µ(y1) +
r1)+(1−k)λ2(µ(y2)+r2), which gives that y∗ = µ(kλ1y1+(1−k)λ2y2)+kλ1r1+(1−k)λ2r2

Now kλ1y1 + (1 − k)λ2y2 ∈ kλ1(F(x1) +D) + (1 − k)λ2(F(x2) +D)
⊂ k intcone(imF+D) + (1 − k) cone(imF+D) ⊂ intcone(imF+D), for all k ∈ (0, 1).
This gives that there exists λ3 > 0, x3 ∈ X, y3 ∈ F(x3) and d3 ∈ D such that
kλ1y1 + (1 − k)λ2y2 = λ3(y3 + d3).
Then, y∗ = µ(λ3(y3+d3))+kλ1r1+ (1−k)λ2r2 = λ3µ(y3)+λ3µ(d3)+kλ1r1+ (1−k)λ2r2

∈ λ3(µ(F(x3)) + µ(d3) + (kλ1r1 + (1 − k)λ2r2)/λ3)
⊂ intcone(imµF +R+), as µ(d3) ∈ R+ and (kλ1r1 + (1 − k)λ2r2)/λ3 ∈ R+.

Thus, (µF,G) is ic-(R+ × E)-convexlike on X.

We now give ε-Lagrangian multiplier theorems:

Theorem 5.3. Let Y be locally convex space, D be closed convex pointed cone
with a non empty interior. Let F̄ : X → 2Y be defined as F̄(x) = F(x) + ε − ȳ for
all x ∈ X, F̄ be ic-D-convexlike on V and (F,G) be ic-(D × E)-convexlike on X0

and intcone((imF,G) +D × E) , ϕ. Further, let (VP) satisfy the generalized slater
constraint qualification, that is, imG∩(− int E) , ϕ. If (x̄, ȳ) is a Strict Benson
proper-ε-minimizer of (VP) and 0 ∈ T(G(x̄)), then there exist T ∈ L+(Z,Y) and
µ ∈ D∗ \ {0} such that (x̄, ȳ) is an ε-minimizer pair of the following scalar set-
valued optimization problem (VP)µ min

x∈X0
µ(F(x) + T(G(x))

If µ ∈ D# then (x̄, ȳ) is a Strict Benson proper-ε-minimizer of (VP)T.

Proof. Since (x̄, ȳ) is a Strict Benson proper-ε-minimizer of (VP), therefore by
Theorem 4.2 there exists µ ∈ D∗ \ {0} such that
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µ(F(x) + ε − ȳ) ≥ 0, for all x ∈ V (8)
Let us define H : X0 → 2R×Z as H(x) = µ(F(x) + ε − ȳ) × G(x) = (µF,G)(x) + (µ(ε) −
µ(ȳ), 0). Since (F,G) is ic-(D×E)-convexlike on X0, and intcone[(imF,G)+D×E] , ϕ,
therefore by Lemma 5.2 H is ic-(R+ × E) convexlike on X0.
Further, (8) implies that the system x ∈ X0, H(x) ∩ (− int(R+ × E)) , ϕ has no
solution. Hence by Theorem 3.1, there exists (λ,ψ) ∈ R+ × E∗ \ {0, 0}, y ∈ F(x),
z ∈ G(x) such that λµ(y + ε − ȳ) + ψ(z) ≥ 0 for all x ∈ X0 (9)
We claim that λ , 0.
On the contrary, suppose that λ = 0 then, we have ψ ∈ E∗ \ {0}. By generalized
slater constraint qualification, there exists x1 ∈ X0 such that
G(x1) ∩ (− int E) , ϕ. Thus, there exists z1 ∈ G(x1) such that z1 ∈ (− int E), which
gives that ψ(z1) < 0 but on substituting λ = 0 and taking x = x1 and z = z1 in (9),
we have ψ(z1) ≥ 0, which is a contradiction. Hence λ > 0.
Since µ ∈ D∗ \ {0}. We can choose d ∈ D \ {0} such that λµ(d) = 1.
We define the operator T : Z→ Y as T(z) = ψ(z)d (10)
then T ∈ L+(Z,Y) and 0 ∈ ψ(G(x̄))d = T(G(x̄)).
Hence, ȳ ∈ F(x̄) + T(G(x̄)).
From (9) and (10), we obtain
λµ(y + ε + T(z)) = λµ(y) + λµ(ε) + ψ(z)λµ(d) = λµ(y) + λµ(ε) + ψ(z)

≥ λµ(ȳ), for all x ∈ X0 which gives that
µ(ȳ) ≤ µ(y + T(z)) + µ(ε) for all x ∈ X0, y ∈ F(x) and z ∈ G(x).
Hence, (x̄, ȳ) is an ε-minimizer pair of set-valued optimization problem (VP)µ.
If µ ∈ D#, then by using Theorem 4.1, we get that (x̄, ȳ) is Strict Benson proper-ε-
minimizer of (VP)T.

We now establish the converse of Theorem 5.1.

Theorem 5.4. Let x̄ ∈ V, ȳ ∈ F(x̄). If there exists T ∈ L+(Z, y) such that
0 ∈ T(G(x)), and (x̄, ȳ) is a Strict Benson proper-ε-minimizer (VP)T, then (x̄, ȳ) is a
Strict Benson proper-ε-minimizer of (VP).

Proof. Since 0 ∈ T(G(x̄)), and (x̄, ȳ) is a Strict Benson proper-ε-minimizer of (VP)T,
therefore, ȳ ∈ F(x̄) + T(G(x̄)) and clcone(F(V) + T(G(V)) + ε − ȳ) ∩ (−D \ {0}) = ϕ.

(11)
Now we shall show that (x̄, ȳ) is a Strict Benson proper-ε-minimizer pair of (VP).
For that, it is enough to show that cone(F(V) + ε − ȳ) ∩ (−D \ {0}) = ϕ.
On the contrary, if y∗ ∈ cone(F(V) + ε − ȳ) ∩ (−D \ {0}) then there exists x ∈ V,
y ∈ F(x), k > 0 such that y∗ = k(y + ε − ȳ) and y∗ ∈ (−D \ {0}).
Since 0 ∈ T(G(x̄)), therefore, y∗ ∈ clcone(F(V)+T(G(V))+ ε− ȳ), which contradicts
(11).
Hence, (x̄, ȳ) is a Strict Benson proper-ε-minimizer of (VP).
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6. CONCLUSION

The objective of this paper is to introduce the notion of Strict Benson
proper-ε -efficient solution for vector optimization problem with set-valued maps
to generalize the notion of Benson proper efficiency and establish an alternative
theorem. We also obtain scalarization theorems and ε-Lagrangian multiplier
theorems under the assumption of ic-cone-convexlikeness.
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