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1. INTRODUCTION

In the study of vector optimization, the theory of efficiency plays an important
role. Kuhn and Tucker [8] and later Geoffrion [6] observed that certain efficient
points exhibit some abnormal properties and to eliminate such anomalous so-
lutions in large set of efficient solutions, they introduced the concept of proper
efficiency. Borwein [2] and Benson [1] proposed proper efficiency for vector
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maximization problem over cones. Chen and Rong [4] and Li [9] gave characteri-
zation of Benson proper efficiency for vector optimization problems. Cheng and
Fu [5] introduced the concept of strong efficiency in locally convex spaces. Vari-
ous authors have studied approximate efficient solutions for vector optimization
problems. Some of them are Liu [11], Chen and Huang [3] and Rong and Wu
[12]. Li, Xu and Zhu [10] introduced e-strictly efficient solutions for set-valued
optimization problem.
The purpose of this paper is to introduce the notion of Strict

Benson proper-¢-efficient solution for vector optimization problems with set-
valued maps as a generalization of Benson proper efficient solution [1]. We study
the relationship of Strict Benson proper-e-efficient solution with e-strict efficient
solution given by Li et al. [10]. An alternative theorem is presented in section 3
for ic-cone-convexlikeness set-valued maps, which were introduced by Sach [13],
and scalarization theorems and e-Lagrangian Multiplier theorems are established
in sections 4 and 5.

2. DEFINITIONS AND NOTATIONS

Let X be locally convex topological vector space and Y, Z be real locally convex
Hausdorff topological vector spaces; let D C Y, E C Z be pointed closed convex
cones. Foraset A C Y, we write coneA ={Aa: A >0, a € A}.

The closure and interior of the set A are denoted by clA and intA. A convex
subset B of cone A is a base of A if 0 ¢ cIB and A = coneB. Let Y* be the dual
space of Y, the positive dual cone D* of D C Yisdefinedas D* = {f € Y*": f(y) > 0
for all y € D}. The set D¥ of strictly positive functions is defined as

D*={feY*: f(y)>0forally € D\ {0}}.

For a set-valued map F : X — 2¥ the domain of F, denoted by domF, is defined
as domF = {x € X : F(x) # ¢}, and the image of F, denoted as imF, is defined as
imF = F(X) = Usex F(0).

Benson [1] introduced the following definition of proper efficiency.

Definition 2.1. If S is non empty setin Y and D is a convex conein Y, theny € S
is called Benson proper efficient point of S over D written as y € BPMin[S, D] if
clcone(S + D — y) N (-=D) = {0} )

Now we introduce the notion of Strict Benson proper-e-efficient point of a set S
over a cone D.

Definition 2.2. Let S be a non empty setin Y, D be a convex conein Y and ¢ € D,
then 7 € S is called a Strict Benson proper-¢-efficient point of S over D written as
7 € BP-e-Min[S, D] if clcone(S+ e =) N (=D \ {0})) = ¢. (2)
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It is easy to verify that BPMin[S, D] ¢ BP-e-Min[S, D].

The following example illustrates the proper containment, that is, there exists
7 ¢ BP-e-Min[S, D] but i € BPMin[S, D].

Example 2.3. Let Y =R?>, D ={(x,y) : x < y,y >0}, ¢ (%, %),
5={(23),(31).(3:3), @D} 7= (1,1, thenS+e-y = {(1.3). (3. 3). G.3), (3, 3))
and clcone(S +e—-7) N (=D \ {0 })—¢)

Thus, i € BP-e-Min[S, D].

Also,S—7 = {(‘71, _Tl), (%,0), (%, %), (O, 0)} which shows that (‘71, ‘Tl) € clcone(S +
D -7 N (=D\{0}) and clcone(S + D — ) N (=D \ {0}) # ¢.

Thus, 7 ¢ BP-e-Min[S, D].

Li, Xu and Zhu [10] introduced e-strictly minimal efficient point which is defined
as follows.

Definition 2.4. Let S be a non empty subset of Y, D be a convex cone in Y, B be a
base of D, € € D, then i € S is called an e-strictly minimal efficient point of S with
respect to B, written as 7 € e-Fmin[S, B] if there is a neighborhood U of 0 such that
clecone(S+e-p7)N(U—-B)=¢ 3)

It is shown in the following theorem that every e-strict minimal efficient point of
S with respect to B is Strict Benson proper-¢-efficient point of S over D.

Theorem 2.5. ¢-Fmin[S, B] ¢ BP-e-Min[S, D].

Proof. Let i € ¢-Fmin[S, B], which implies that there is neighborhood U of 0 such
that clcone(S + ¢ = ) N (U - B) = ¢.

Now, to show i € BP-e-Min[S, D], we have to prove clcone(S+&—#)N(=D\{0}) = ¢.
On the contrary, suppose that there exists y* € clcone(S + ¢ — #) N (=D \ {0}). It
follows that y* € clcone(S + ¢ — /) and y* € (=D \ {0}), which gives that y* = —d, for
d € D\ {0}. Since B is a base of D, therefore D = cone B, which gives that d = Ab,
for A >0, b € B. It follows that y* = —d = —Ab.

Clearly, =-be (U-B)and also € clcone(S + ¢ — 7). Thus, £ ys clcone(S + ¢ —
NINCE B), which gives a contrad1ct1on

Remark 2.6. The following example illustrates that the set of Strict
Benson proper-¢-efficient points is not contained in the set of e-strictly minimal
efficient points.

Example 2.7. Let Y = R%, S = {(71 %) ( ,4) (13,%)} ={(x,y):x<
B={xy:x+y+1=0,x <0,y <0} be a base of coneD, s—( =1,0),

0,y <0},
- (3
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and U = {(x,y) : ¥+ > < 1}, then S+ ¢ -7 = {(%,0),(—2,%),(;—3,1)} and
clcone(S + ¢ — i) N (=D \ {0}) = ¢, which gives that # € BP-e-Min[S, D].

Also, (I—é, l) € clcone(S + ¢ — ) N (U — B), which shows that i ¢ e-Fmin[S, B]. Thus
BP-e-Min[S, D] ¢ e-Fmin[S, B].

3. THEOREM OF ALTERNATIVE

A theorem of the alternative will be established in this section for ic-D-convexlike
set-valued maps, which were introduced by Sach [13] and are defined as follows.

Definition 3.1. A set-valued map F : X — 2V is called ic-D-convexlike on X if
intcone(F(X) + D) is a convex cone and F(X) + D C clintcone(F(X) + D).

Theorem 3.2. Let intD # ¢ and let the set-valued map F : X — 2¥ be ic-D-
convexlike on X then, one and only one of the following statements is true:

(I) there exists x € X such that F(x) N (—=intD) # ¢

(II) there exists p € (D" \ {0}) such that u(y) > 0, for all y € F(X).

Proof. Assume that both (I) and (II) hold. Then there exist x € X, y € F(x) such
that y € —int D, which gives that u(y) < 0 for every u € D" \ {0}. This contradicts
(II). Thus (I) and (II) cannot hold simultaneously.

Now, we show that if (I) is not true, then (II) holds.

Suppose that F(X) N (—int D) = ¢. 4)
Now we claim that intcone(F(X)+D)N(—int D) = ¢. Indeed, let y* € intcone(F(X)+
D)N(—int D), then thereexistx € X,d € D, A > Osuchthaty* = A(F(x)+d) € —int D,
which gives that % —d € F(x). Since y* € —intD, A > 0 therefore, yx € —intD,
which implies that % —d € —intD. Thus, %—\ —d € F(X)N(—int D), which contradicts
(4).

By the assumption F is ic-D-convexlike on X, we have that intcone(F(X) + D) is a
convex cone. Thus, by separation theorem for convex sets in topological vector
spaces as given by Jahn [7], there exists p € Y* \ {0} such that

u(y +td)>0forally € F(X),de Dand t > 0. (5)
We assert that u(d) > 0 for all d € D otherwise, suppose that there exists d € D
with u(d) < 0. Then we will have u(y + td) = u(y) + tu(d) < 0, for given y and
sufficiently large ¢, which contradicts (5). Thus, p € D*\ {0}. Letting t — 0 in (5),
we obtain p(y) > 0 for all y € F(X). This implies that (II) is true.

4. SCALARIZATION

We consider the following set-valued optimization problem:
(VP) D—m%(n F(x)
xeXo

s.t. G(x) N (=E) # ¢
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where X C X is a nonempty set, ECZ is a pointed closed convex cone, —E ={—x:
x€E}, F: Xo — 2Y, G : Xy — 27 are set-valued maps. The set of feasible solutions
of (VP) is denoted by V = {x € Xy : G(x) N (=E) # ¢}.

We now introduce Strict Benson proper-¢-efficient solution of (VP).

Definition 4.1. A point ¥ € V is said to be Strict Benson proper-¢-efficient solution
of (VP) if F(¥) N BP-e-Min[F(V), D] # ¢.

A pair (%, i) is said to be Strict Benson proper-e-minimizer of (VP) if 7 € F(X) N
BP-¢-Min[F(V), D].

Corresponding to the set-valued optimization problem (VP), we associate the
following scalar optimization problem:

(SP) min(uP)()
where y € D*\ {0}

Definition 4.2. Let X € V, §j € F(%), then ¥ is said to be an e-minimal solution of
(SP)u, if u(y) < u(y) + p(e) for all y € F(V) and (%, i) is said to be an e-rninimizer
pair of (SP)p.

The fundamental results characterizing Strict Benson proper-e-minimizer of (VP)
in terms of e- minimizer of (SP)u are now discussed.

Theorem 4.3. Let u € D¥ be fixed. If (%, 7) is an e-minimizer pair of (SP)y, then
(%, 7) is a Strict Benson proper-e-minimizer pair of (VP).

Proof. Since (X, 7) is an e-minimizer of (SP)u, therefore

(@) < uly) + p(e), for all y € F(V). (6)
Now, we shall show that (%, 7) is a Strict Benson proper-e-minimizer pair of (VP).
It is enough to show that, clcone(F(V) + ¢ — #/) N (=D \ {0}) = ¢ . Indeed, if there
exists y* € clcone(F(V) + ¢ — ) N (=D \ {0}), then, there exist {y,} € F(V) and
{A4) € Ry such that y* = lim A,(y, + € — §) and y* € =D \ {0}

By using (6), we have u(y*) = lim A, u(y, + e —7) =0 (7)
Since u € D* and y* € =D \ {0}, therefore u(y*) < 0, which contradicts (7).

Thus, we conclude (X, ) is a Strict Benson proper-e-minimizer pair of (VP).

Below we give an example to illustrate the above theorem.

Example4.4. Let X =R, Y =R?* Z=R?*and D = {(x,y): x > y,y > 0},
E={(x,y):y>x,x<0}and ¢ =(%,%)
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[0,1]x[0,1] ifx>0
[0,x*]x[0,x*] ifx<0
(10,21, ) if x>0

[-2,-1] x[-2,-1] ifx<0

The feasible set of the problem (VP)is V = {x : x > 0}.
Lety=(3,3)e D" £=1and 7 =(1,0) e F(®).

Then, F(V) = [0,1]x[0,1], u(y) = 3, u(e) = § and u(y) < u(y)+u(e), forally € F(V),
which implies that, (X, #) is an e-minimizer pair of (SP)u.

Since ¢ — 7 = (0, 1), therefore clcone(F(V) + & = 7) N (=D \ {0}) = ¢.

Thus, (%, 7) is a Strict Benson proper-e-minimizer pair of (VP).

Define F : X — 2Y, as F(x) = and define G : X — 27, as

G(x) =

Theorem 4.5. Let F : X — 2V be defined as F(x) = F(x) + ¢ — i for all x € X and
F be ic-D-convexlike on V. If (%, i) is a Strict Benson proper-e-minimizer pair of
(VP), then there exists u € D* \ {0} such that (%, ) is an e-minimizer pair of (SP)u.

Proof. Let (%, 7) be a strict Benson proper-e-minimizer pair of (VP). Then ¥ € V and
7 € F(x) NBP-e-Min[F(V), D], which gives that clcone(F(V) +¢e—%)N(=D\ {0}) = ¢.
It follows that (F(V) + € — ) N (—int D) = ¢.

By assumption F is ic-D-convexlike on V, then by Theorem 3.1 there exists i €
D\ {0} such that p(z) > 0 for all z € F(V), which gives that u(y + € — ) > 0, for all
y € F(V).

Thus, u(y) + u(e) = u(y), for all y € F(V). Hence, (X, 7) is an e-minimizer pair of
(SP)u.

5. e-.LAGRANGIAN MULTIPLIER THEOREMS

In this section we present two e-Lagrangian Multiplier theorems which show that
a Strict Benson proper-e-minimizer of the constrained set-valued vector optimiza-
tion problem (VP) is exactly a Strict Benson proper-e-minimizer for an appropriate
unconstrained set-valued vector optimization problem under certain conditions.
Let L(Z, Y) be the space of continuous linear operators from Z to Y,

andlet L.(Z Y)=({T € L(Z Y): T(E) c D}.

Denote by (F, G) the set-valued map from X to Y X Z defined by (F, G)(x) = F(x) X
G(x), for all x € X.

Ifue Y*,TeL(Z,Y),wedeﬁneyF:X—)Z]RandF+TG:X—>2Yas

(uF)(x) = u(F(x)) and (F + TG)(x) = F(x) + T(G(x)), respectively.

The set-valued Lagrange map of (VP), L : Xo X L,(Z,Y) — 2¥ is defined as

L(x, T) = F(x) + T(G(x)), where (x,T) € Xo X L, (Z,Y).

We consider the following unconstrained set-valued minimization problem asso-
ciated with (VP) for a fixed T € L. (Z,Y)
(VP)r D—m%(n L(x,T)

xeXy
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Sach [13] gave the following result for ic-cone convexlike set-valued maps.

Lemma 5.1. Let intcone(imF +D) # ¢, then F is an ic-D-convexlike if and only if
kintcone(imF +D) + (1 — k) cone(imF +D) C intcone(imF +D), for all k € (0, 1).

We establish the following result by using the above lemma.

Lemma 5.2. If (F, G) is ic-D-convexlike on X and intcone(im(F,G) + D X E) # ¢
then for y € D"\ {0}, (uF, G) is ic-(IR+ X E)-convexlike on X.

Proof. Let (F, G) be ic-D-convexlike on X. Then by using Lemma 5.1
k(intcone(imF +D), intcone(imG +E)) + (1 — k)(cone(imF +D), cone(imG +E)) C
(intcone(imF +D), intcone(imG +E)), for all k € (0, 1) which gives that
kintcone(imF +D) + (1 — k) cone(imF +D) C intcone(imF +D), for all k € (0,1) and
kintcone(imG +E) + (1 — k) cone(imG +E) C intcone(imG +E), for all k € (0, 1).
Now, it is enough to show kintcone(im uF + R,) + (1 — k) cone(im puF + R,) C
intcone(im uF + R;), for all k € (0, 1).
Let y* € kintcone(im puF + R;) + (1 — k) cone(im uF + R,), then there exists A; > 0,
Ay 20, x1,x € X, Y1 € F(xl), Yo € F(Xz) and 11,72 € Ry such that y* = kAl(‘Ll(yl) +
1’1)+(1—k)/\2(y(y2)+1’2), which gives that Y= [.l(k/\1y1 +(1—k)/\2y2)+k)\11’1 +(1-k)Ar2
Now kA1y1 + (1 = k)Axy2 € kA1 (F(x1) + D) + (1 = k)A2(F(x2) + D)
C kintcone(imF +D) + (1 — k) cone(imF +D) C intcone(imF +D), for all k € (0, 1).
This gives that there exists A3 > 0, x3 € X, y3 € F(x3) and d3 € D such that
k/\l]/l + (1 - k)/\zyz = A3(]/3 + d3)
Then, ]/* = [J(/\g,(yg, +d3)) +k/\11’1 + (1 —k)/\z?’z = /\3#(3/3) + A3[J(d3) +k/\11’1 + (1 —k)Asz
€ A3(u(F(x3)) + w(ds) + (kArr1 + (1 = k)Aar2)/ Az)
C intcone(im pF + R;), as u(ds) € Ry and (kAirq + (1 — k)Aar) /A5 € R
Thus, (uF, G) is ic-(IR+ X E)-convexlike on X.

We now give e-Lagrangian multiplier theorems:

Theorem 5.3. Let Y be locally convex space, D be closed convex pointed cone
with a non empty interior. Let F : X — 2¥ be defined as F(x) = F(x) + ¢ — j for
all x € X, F be ic-D-convexlike on V and (F, G) be ic-(D X E)-convexlike on Xj
and intcone((imF, G) + D X E) # ¢. Further, let (VP) satisfy the generalized slater
constraint qualification, that is, inGN(—intE) # ¢. If (¥, 7) is a Strict Benson
proper-e-minimizer of (VP) and 0 € T(G(¥X)), then there exist T € L.(Z,Y) and
u € D*\ {0} such that (%, 7) is an e-minimizer pair of the following scalar set-

valued optimization problem (VP) u m%(n u(F(x) + T(G(x))
XEX
If u € D* then (%, ) is a Strict Benson proper-¢-minimizer of (VP);.

Proof. Since (%, ) is a Strict Benson proper-e-minimizer of (VP), therefore by
Theorem 4.2 there exists u € D*\ {0} such that
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U(Fx)+e—-17)=0,forallxe V (8)
Let us define H : Xy — 28 as H(x) = u(F(x) + ¢ — i) X G(x) = (uF, G)(x) + (u(e) —
u(#), 0). Since (F, G) isic-(DxE)-convexlike on Xy, and intcone[(imF, G)+DXE] # ¢,
therefore by Lemma 5.2 H is ic-(IR;. X E) convexlike on Xj.

Further, (8) implies that the system x € X,, H(x) N (—int(Ry X E)) # ¢ has no
solution. Hence by Theorem 3.1, there exists (A,1) € R, x E*\ {0,0}, y € F(x),
z € G(x) such that Au(y + ¢ — ) + Y(z) > O for all x € Xy 9)
We claim that A # 0.

On the contrary, suppose that A = 0 then, we have ¢ € E* \ {0}. By generalized
slater constraint qualification, there exists x; € X such that

G(x1) N (=intE) # ¢. Thus, there exists z; € G(x;) such that z; € (—int E), which
gives that ¢(z;) < 0 but on substituting A = 0 and taking x = x; and z = z; in (9),
we have 1(z1) > 0, which is a contradiction. Hence A > 0.

Since u € D"\ {0}. We can choose d € D \ {0} such that Au(d) = 1.

We define the operator T : Z — Y as T(z) = (z)d (10)
then T € L,(Z,Y) and 0 € Y(G(x))d = T(G(X)).
Hence, i € F(x) + T(G(%)).

From (9) and (10), we obtain
Ay + € + T(2)) = Apy) + Ape) + PE@AU@) = Au(y) + () + ¥(2)
> Au(y), for all x € X which gives that
(@) < w(y + T(z)) + p(e) for all x € Xy, y € F(x) and z € G(x).
Hence, (%, 7) is an e-minimizer pair of set-valued optimization problem (VP)u.
If u € D*, then by using Theorem 4.1, we get that (%, 7) is Strict Benson proper-¢-
minimizer of WT.

We now establish the converse of Theorem 5.1.

Theorem 5.4. Let ¥ € V, i € F(%). If there exists T € L.(Z, y) such that
0 € T(G(x)), and (%, 7) is a Strict Benson proper-e-minimizer (VP), then (¥, i) is a
Strict Benson proper-¢-minimizer of (VP).

Proof. Since 0 € T(G(%)), and (X, ) is a Strict Benson proper-¢-minimizer of (VP),

therefore, i € F(%) + T(G(x)) and clcone(F(V) + T(G(V)) + e =) N (=D \ {0}) = ¢.
(11)

Now we shall show that (¥, ) is a Strict Benson proper-e-minimizer pair of (VP).

For that, it is enough to show that cone(F(V) + ¢ — #) N (=D \ {0}) = ¢.

On the contrary, if y* € cone(F(V) + ¢ — #) N (=D \ {0}) then there exists x € V,

y € F(x), k > 0 such that y* = k(y + ¢ — ) and y* € (=D \ {0}).

Since 0 € T(G(%)), therefore, y* € clcone(F(V) + T(G(V)) + € — §j), which contradicts

(11).

Hence, (X, #) is a Strict Benson proper-e-minimizer of (VP).
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6. CONCLUSION

The objective of this paper is to introduce the notion of Strict Benson

proper-¢ -efficient solution for vector optimization problem with set-valued maps
to generalize the notion of Benson proper efficiency and establish an alternative
theorem. We also obtain scalarization theorems and e-Lagrangian multiplier
theorems under the assumption of ic-cone-convexlikeness.
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