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1. INTRODUCTION

Research in location theory formally started in 1909 by Alfred Weber [110]
known as the father of modern location theory (Eilon et al. [35]). He studied the
problem of locating a single warehouse in order to minimise the total travel dis-
tance between the warehouse and a set of customers. Since then, many researchers
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have observed this problem in many different areas. These include Hotelling [65],
who considered the problem of locating two competing vendors along a straight
line. The first powerful iterative approach to deal with the single facility location
problem in the plane so to minimise the sum of the weighted distances from a
single facility to all the points (i.e., continuous space) is put forward by Weiszfeld
[111].

Modern location theory arose during the 1950’s when several researchers in-
vestigated some problems in the area of location analysis. These include Valinsky
[109], who determined the optimal location for fire fighting vehicles, Miehle [81],
who investigated the problem of minimizing link length in networks, Mansfield
and Wein [80], who presented a model for the location of a railroad classifica-
tion yard, and Young [113], who determined the optimum location for checking
stations on a rail line.

The study of location theory began to grow when Hakimi [54] published the
seminal paper about location problems. In this paper, he wanted to locate one
or more switching centres in a communication network and police stations in
a highway system to minimise the sum of distances or the maximum distance
between facilities and points on a network. These models are known as the
p-median and p-centre problems respectively, where p denotes the number of
facilities to be located. This will be reviewed later. For more information or
references, chapter 1 of Drezner and Hamacher [34] gives a brief review of the
history of location analysis. Farahani et al. [40] provided a recent review on
hierarchical facility location problem.

There are many books and papers that provide a review of location theory. For
books, which briefly describe the taxonomy of location problems and a variety of
techniques to solve location problems, see Eilon et al. [35], Handler and Mirchan-
dani [56], Love et al. [77], Mirchandani and Francis [84], Francis et al. [43], Daskin
[25], Drezner and Hamacher [34], and Nickel and Puerto [91]. Moreover, there
are several interesting papers that review location problems, including Francis et
al. [42], Tansel et al. [106] [107], Aikens [1], Brandeau and Chiu [12], Eiselt et al.
[36], Sridharan [104], Hale and Moberg [55], Daskin [27], and Brimberg et al. [13].

Location problems may be classified by their objective functions, including
the minimax, the maximin, or the minisum. Based on these objectives, location
problems can be divided into three groups as follows:

• Median Problems (minisum)
The median problems are those where one or more facilities are to be located
in order to minimise the average cost (average time) between the customer
and the nearest facility. The problem is known as the minisum problem or
the p-median problem, p denoting the number of facilities to be located.

• Centre Problems (minimax/maximin)
Centre problems arise when a given number of facilities needs to be found
with the objective of minimizing the maximum travel cost (travel time) be-
tween customers and the nearest facility. The problem is known as the
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minimax problem or the p-centre problem. In the case of locating obnox-
ious facilities such as nuclear/chemical station and waste disposal sites, the
objective function reverses to a maximin instead of a minimax.

• Covering Problems
Covering problems occur when there is a given critical coverage distance
or cost or time within customers and facilities. The number of facilities is
deemed sufficient if the distance between the customer and the nearest facil-
ity does not exceed some critical value, but deemed insufficient otherwise.
This introduces the notion of coverage. Note that the p-centre can also be
considered as a version of covering where the coverage value becomes a
decision variable instead of an input.

The conditional location problems occur if some (say q) facilities already exist
in the study area, and the aim is to locate p) new facilities given the existing q)
facilities. This problem is also known as the (p, q) median/centre problem (Drezner
[33]) where a customer can be served by the existing or the new open facilities,
whichever that is closest to the customer. When q = 0, the problem reduces to the
unconditional problem (the p-median/centre problem for short).

The purpose of this paper is to survey methods for solving large discrete
location problems, and the review is classified into two main categories, namely a
review with and without the incorporation of aggregation. In addition, a review
on the conditional location problems is presented. This survey could also be
very useful for researchers and students to find questions that identify research
gaps. The paper is organized as follows. The review on solving large location
problems using aggregation is described in Section 2, followed by the one without
aggregation in Section 3. The review on conditional location problems is given in
Section 4. The last section provides a conclusion and some highlights for possible
research avenues.

2. A REVIEW ON SOLVING LARGE LOCATION PROBLEMS USING
AGGREGATION

In special cases, facility location problems may consist of a large number of
demand points (customers). These problems arise, for example, in urban or
regional area where the demand points are individual private residences. It may
be time consuming or even impossible to solve optimally the location problems
involving a large number of demand points. It is quite common to aggregate
demand points when solving large scale location problems. The idea behind the
aggregation is to reduce the number of demand points to be small enough so an
optimiser can be used. In this case, the location problems are partitioned into
smaller problems and can be solved within a reasonable amount of computing
time. However, this aggregation may reduce the accuracy of the model. In other
words, this aggregation introduces error in the data used by location models and
models output. Many researchers have studied the effects of aggregation on the
solution of location problems. Note that in this review we do not discuss the
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case of covering a complete region, such as land for irrigation, nature reserve,
and weather radar equipments. Approximating such areas by point may not be
appropriate because the errors due to approximation will occur. One way is to
partition the entire area into smaller areas (polygons), where each polygon needs
to be covered, see Murray and Wei [89] and Murray et al. [90].

In this section, first we give a brief introduction to aggregation by describing
an aggregation scheme on the p-median, the p-centre, and the Set Covering prob-
lems. This is followed by the description of the aggregation error measurements,
aggregation literature on median problems and on centre/covering problems, and
related aggregation work on other location problems.

2.1. An Introduction to Aggregation
The idea behind the aggregation is to reduce the number of demand points

so to be small enough that an optimiser can be used. In this case, the location
problems are partitioned into smaller problems, and hence they can be solved
within a reasonable amount of computing time. However, this aggregation may
reduce the accuracy of the model. In other words, this aggregation introduces
error in the data used by location models and models output. Many researchers
have studied the effects of aggregation on the solution of location problems.

Current and Schilling [23] define demands point as Basic Spatial Unit (BSU)
and aggregated demands point as Aggregated Spatial Unit (ASU). The right num-
ber of ASUs to be generated to solve location problems is a challenging issue. Until
now, there is no a unique answer how to trade-off the benefits and costs of ag-
gregation. The process of determining an aggregation scheme with a minimum
error is an NP-hard problem, see Francis and Lowe [44].

Table 1 describes our notation in location models, which is focused on an
aggregation approach. We assume that there are n BSUs, i = 1, ..., n. Let C be
the list of BSUs, C = (c1, c2, ..., cn), and I = {1, 2, 3, ..., n} the set of all BSUs. Each
BSU usually has a demand or a weight, say wi. Conducting aggregation, n BSUs
are replaced by m ASUs, where m << n. Let I′ = {1, 2, 3, ...,m} represent the set
of all ASUs, and each ASU denotes one or more BSUs (subset). Let C′ be the
list of ASUs, C′ = (c′1, c

′
2, ..., c

′
m) and Ak denotes the set of BSU in the subset k,

k = 1, ...,m. It is common that the centroid of BSU is used in each part of the
subset as the ASU location. Let F represent the set of locations of the p facilities.
In the original model, we denote the distance between c and the closest element
in F by D(F, c) with D(F, c) = Min{d(F, c), c ∈ C}, whereas in the aggregated model
D(F, c′) represents the distance between c′ and the nearest facility. Let the objective
function with the given original BSUs be f (F : C), whereas the one with ASUs be
f (F : C′). The difference between f (F : C) and f (F : C′), i.e. | f (F : C) − f (F : C′|, is
known as the aggregation error.

Table 2 shows example formulations of the objective function on the p-median,
the p-centre, and the Set Covering problems. These example formulations explain
how to represent n BSUs with aggregation of m ASUs. It can also be argued that
the aggregation error will decrease as m increases.
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Table 1: Notation in location model

Notation Description
I = {1, 2, 3, ..., n} the set of all BSUs
C = (c1, c2, ..., cn) the list of BSU
wi demand/weight for the ith BSU, i = 1, 2, ..., n
I′ ∈ {1, 2, 3, ...,m} the set of all ASUs
C′ = (c′1, c

′
2, ..., c

′
m) the list of ASUs

Ak the set of BSU in the kth (ASU), k = {1, 2, 3, ...,m}with
m∪

k=1
Ak = I

p the number of facilities to be located
F the optimal locations of the p facilities (i.e. optimal facility configuration)

using the original formulation of the location model (i.e., full model)
F′ the optimal locations of the p facilities found with the aggregated location model
D(F : c) the distance between a BSU c ∈ C and the closest element in F

(i.e. Min{d(c, e), e ∈ F}, c ∈ C )
D(F : c′) the distance between a BSU c′ ∈ C′ and the closest element in F

(i.e. Min{d(c′, e), e ∈ F}, c′ ∈ C′ )
D(F′ : c) the distance between a BSU c ∈ C and the closest element in F′

(i.e. Min{d(c, e′), e′ ∈ F′}, c ∈ C )
D(F′ : c′) the distance between a BSU c′ ∈ C′ and the closest element in F′

(i.e. Min{d(c′, e′), e′ ∈ F′}, c′ ∈ C′ )
f (F : C) objective function evaluated using F and D(F : c)
f (F : C′) objective function evaluated using F and D(F : c′)
f (F′ : C) objective function evaluated using F′ and D(F′ : c)
f (F′ : C′) objective function evaluated using F′ and D(F′ : c′)
r coverage distance of customers from a facility (for covering problems)

Table 2: Objective functions for the original and the aggregated location models

Original location model Aggregated location model

p-median f (F : C) =
n∑

i=1
wiD(F, ci)

Let ŵk =
∑

wi : i ∈ Ak

f (F : C′) =
m∑

x=1
ŵkD(F, c′i )

p-centre f (F : C) = max{wiD(F : ci) : i ∈ I} Let w′k = max{wi : i ∈ Ak}
f (F : C′) = max{wkD(F, c′k) : k ∈ I′}

set covering
Minimize|F′′| Let ρk = min{ri : i ∈ Ak}
st : D(F : ci) ≤ ri : i ∈ I Minimize|F|

st : D(F : c′k) ≤ ρk : ∀k ∈ I′
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Francis et al. [47] provided a comprehensive review of aggregation error for
location models. They described aggregation error measurements and surveyed
some of the principal papers about aggregation errors. They also arranged the
review into two main categories, namely median problems and centre/covering
problems.

2.2. Aggregation Error Measurements
Replacing demand points (BSUs) by aggregated demand points (ASUs) on

location problems introduce demand point aggregation error. This error affects
model output, such as facility locations and inaccurate value of the objective
function. There are several commonly used aggregation error measurements but
no agreement on which measurement is the best. In the subsequent section, we
review them.

Table 3 shows a variety of aggregation errors in location models. These are
given in Francis et al. [47], Farinas and Francis [38], Hodgson et al. [64], and Casil-
las [16]. Calculating the distance between ASU and BSU (ASU-BSU distance) is a
simple way to measure the aggregation error. If the set of location of the facilities
has already been found, we can measure the difference in distance between the fa-
cilities and BSU, and between the facilities and ASU as another aggregation error
(distance error). According to Table 1, we consider f (F : C) as the objective of the
original facility model and f (F : C′) as its approximation. From these objective
functions, there are three basic aggregation error types, namely the absolute error,
the relative error, and the maximum absolute error. The absolute error is defined
as ae(F) = | f (F : C′)− f (F : C)|. As the error can be negative or positive, the absolute
function is adopted to avoid misinterpretation of the errors that could be caused
by the cancellation of the negative against the positive errors. Moreover, the abso-
lute function is useful in calculating the total error. Without the absolute function,
the total error can even be zero or close to zero, which could be misleading by
giving a wrong signal. The relative error allows us to know how far the errors
from the objective function are spread. The relative error is usually converted to
a percentage for simplicity. By the maximum error, the facility that provides the
biggest error is determined, which represents the worst case scenario. One of the
effects of aggregation error could lead to incorrect location of facilities. The easiest
way to measure this error is to calculate the difference in the distance between F′

and F.
Casillas [16] proposed the concept of cost error and optimality error on aggre-

gation. These errors arise as a result from the ABC errors introduced by Hillsman
and Rhoda [60], which we describe in the next subsection. The cost error can be
defined by ce = f (F′ : C) − f (F′ : C′, the difference between the objective function
evaluated using F′ and D(F′, c) and the one using F′ and D(F′, c′). The difficulty to
solve the original location problem lies behind this error. The optimality error (oe)
is the difference between the objective function evaluated by using F and D(F, c),
and the one using F′ and D(F′, c). It means that the original location problem
has to be solved before the optimality error can be computed. Both of these er-
rors usually convert to percent (ce and oe are divided by f (F′ : C) and f (F : C)



C.A. Irawan, S. Salhi / Large Facility Location Problems Survey 319

Table 3: Aggregation error measurements

Aggregation Error Type Aggregation Error Formulation
For general location problem:
ASU-BSU distances d(c′k, ci), i ∈ N, k ∈M, ci ∈ C, c′k ∈ C′

Distance error D(F, c′k) −D(F, ci), i ∈ N, all F, k ∈M, ci ∈ C, c′k ∈ C′

Absolute error ae(F) = | f (F : C′) − f (F : C)|, all F
Relative error rel(F) = ae(F)/ f (F : C), all F
Maximum absolute error mae( f ′, f ) = max{ae(F) : F,F ⊂ S, |F| = p}
Location error Difference between F′ and F, di f f (F′,F)
Cost error ce = f (F′ : C) − f (F′ : C′)
Optimality error oe = f (F : C) − f (F′ : C)
Error bound eb a number eb with ae(F) ≤ eb for all F

Ratio error bounds | f (F : C′)/ f (F : C) − 1| ≤ eb/ f (F : C) for all F
(when f (F : C), f (F : C′) > 0) | f (F : C)/ f (F : C′) − 1| ≤ eb/ f (F : C′) for all F

For median problems:
BSU error ei(F) = wi[D(F, c′k) −D(F, ci)], i ∈ N, all F, k ∈M
Total BSU error e(F) =

∑ {ei(F) : i ∈ N} all F
ABC error eabck(F) = wkD(F, c′k) −∑{wiD(F, ci) : i ∈ Nk}

N1, ...,Nm is a subset of N = {1, ..., n}
for all F, wk ≡

∑{wi : i ∈ Nk},Nk ⊂ N, k ∈M
D error decrease the potential facility number
For covering problems:
Violation error VEi(F) = (1/r)([D(F, ci) − r]+, i ∈ N

where [D(F, ci) − r]+ ≡ max{0,D(F, ci) − r}
Average violation error AVE(F) =

n∑
i=1

VEi(F)/n

Maximum violation error MVE(F) = max{VEi : i ∈ N}
Coverage error CE(F) = |U(F)|

n ,U(F) = {i ∈ N : D(F, c) > r}

Conditional average violation error CAVE(F) =


n∑

i=1
VEi(F)

|U(F)| if U(F) , ϕ (i.e. |U(F) ≥ 1)
0 otherwise U(F) = ϕ

respectively). This can be used to evaluate the performance of a new approach
on smaller instances or when the exact method is able to run a long time without
computer failure.

Francis et al. [46] proposed error bounds for facility location models. These
error bounds are a guide for demand point aggregation to keep the error small.
Error bound (eb) is a given number such that | f (F : C′)− f (F : C)| ≤ eb or ae(F) ≤ eb
for all F. Ratio error bound can also be used instead of the error bound as the
latter is easier to describe (i.e., 5% accuracy).

2.2.1. Aggregation error on the p-median problem
In the p-median problem, the easiest way to measure the error is to measure

the distance between each BSU location and its weight ASU location. This is also
known as the BSU error and is defined as ei(F) = wi[D(F, c′k) − D(F, ci)]. Hillsman
and Rhoda [60] classify errors caused by aggregation in the location problems
into three types, namely source A, B, and C errors. Later on, Hodgson et al.
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[64] introduced another type of error occurring in discrete location problems,
which they called Source D error. These four types of error, which will be used
throughout this review, are described as follows.

• Source A error
This error occurs because of the loss of location information due to aggrega-
tion. It appears when, instead of the true average distance between a BSU
and a facility to solve a facility location problem, the distance between an
ASU and a facility is used. Figure 1 demonstrates the existence of Source A
error. In the figure, it is assumed that the demand at BSU i, i + 1 and i + 2
has been aggregated as ASU k. Allocating ASU k to facility j means that all
BSU i, i+ 1 and i+ 2 are allocated to facility j. Source A error is then defined

as |d(k, j)ŵk −
i+2∑
r=1

wrd(r, j)|, where ŵk = wi + wi+1 + wi+2. This error occurs

when the distance between ASU k and facility j is not equal to the distances
between BSU i, i + 1, and i + 2 and facility j.

Figure 1: Existence of Source A Error

• Source B error
The loss of location information due to aggregation also leads to Source B
error. This is a special case of Source A error. This error occurs when a
facility is located at an aggregate spatial unit (ASU) (i.e., site j ≡ site k).
Figure 2 shows the existence of Source B Error where the demand at BSU
i, i + 1 and i + 2 has been aggregated as ASU k. The figure also shows that
facility j has been located at ASU k. However, the true distance from BSU i,
i+ 1 and i+ 2 to facility j must be greater than zero. This is formally defined

as
i+2∑
r=i

wrd(r, j) > ŵkd(k, j) = 0 as d(k, j) = 0.

• Source C error
Source C error is also a direct result of the loss of location information
because of aggregation. This happens when a basic spatial unit (BSU) is
assigned to the wrong facility. For example, a given BSU is not assigned
to the nearest facility but its corresponding ASU is. Figure 3 shows the
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Figure 2: Existence of Source B Error

existence of Source C error where there are two ASUs, say ASUk and ASUk + 1.
Demand at BSUr (r = i, i + 1 and i + 2) has been aggregated at the kth ASU.
On the other hand, demand at BSUs (s = i + 3, i + 4 and i + 5) has been
aggregated at the (k + 1)th ASU. ASUk and ASUk + 1 are then allocated to
facility j and facility j + 1, respectively. The kth ASU is assigned to facility j,
which therefore forces the (i + 2)th BSU to be assigned to facility j, although
this BSU is closer to facility j + 1 than to facility j.

Figure 3: Existence of Source C Error

• Source D error
In discrete facility location problems, Hodgson et al. [64] introduced another
error and named it Source D error. This occurs when a BSU happens to be
also at a potential facility location. In other words, this error arises when
the BSU locations themselves are potential sites, and hence the optimal con-
figuration will be part of these sites. Conducting aggregation will decrease
the number of potential facilities, but using an ASU as a potential location
in facility location problems could lead to Source D error.
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2.2.2. Aggregation error on covering problems
The covering problem aims at finding the minimum number of facilities such

that each customer is covered by at least one facility. It means that facilities have
a covering area, usually represented by a given radius (r). Figure 4 demonstrates
the error on the covering problems.

Figure 4: Example of error on the covering problems

The figure indicates that demand at BSU i, i + 1 and i + 2 has been aggregated
at the kth ASU. On the aggregated model, the kth ASU is assigned to facility j. The
figure shows that facility j can cover the kth ASU because it is within r from the
facility j. However, the error will occur when the kth ASU is disaggregated (BSU
i, i + 1 and i + 2 are also allocated to facility j). There is no error at the ith BSU
and the (i + 2)th BSU, but at the (i + 1)th BSU there exists an error d( j,BSUi+1) > r.
Farinas and Francis [38] define this error as the violation error at the (i+ 1)th BSU,
denoted by VEi(X), which is given as follows:

VEi(F) = (1/r)([D(F, ci) − r]+where[D(F, ci) − r]+ ≡ max(0,D(F, ci) − r)

If the ith BSU is covered by facility F within r then, VEi(X) is obviously zero.
On the covering problems, Farinas and Francis [38] also proposed other types

of errors including the average violation error, the maximum violation error, the
coverage error, and the conditional average error as defined in Table 3. It can
be noted that these coverage based errors are highly likely to exist if an ASU is
tightly covered and have some BSUs that are located on the opposite side of the
facility that could not be easily covered, and hence generate such errors.

2.3. Aggregation Literature on Median Problems
In this section, we give an overview of some papers dealing with aggregation

literature on the p-median problem, see Table 4 for a summary. Aggregation
error was first formally defined by Hillsman and Rhoda [60], who aggregated
the BSUs by constructing a grid of regular polygon over a planar distribution of
BSUs by using the centroid in each polygon as the ASU position. The experiment
showed that if a few ASUs were assigned to each server then the aggregation
error was bigger. These errors are also usually used in many papers to measure
the aggregation scheme performance.
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The effects of aggregation error in median and centre problems were inves-
tigated by Goodchild [52]. He showed that on the median problems the effects
of aggregation error are significant and include inaccurate value of the objective
function, and inaccurate location of the facilities. He stated that ’aggregation
tends to produce more dramatic effects on location than on the values of the ob-
jective function’ (Goodchild, p. 253). Moreover, he also highlights that there is no
aggregation scheme without a possible resulting error.

Bach [6] investigated the effects of different levels of aggregation and different
types of distance measures for the discrete median problem, the centre problem,
and the covering problem. He used data sets for the cities of Dortmund, Kleve,
and Emmerich in Germany to analyse the location error and the objective function
error. He concluded that ’the level of aggregation exerts a strong influence on the
optimal locational patterns as well as on the values of the locational criteria’.

Mirchandani and Reilly [85] examined the effect of replacing the distances
to demand points (BSUs) in a region by the distance to a single point (ASU),
representing the region in a discrete location model. The continuously distributed
demand points are used in their experiments.

Current and Schilling [23] proposed a method for eliminating source A, and
source B errors. They introduced a novel way of measuring aggregated weighted
travel distances for p-median problems. Let d(i, j) denote the distance between
the ith and the jth BSUs and d̃(k, j) the distance between the representative point of
the kth ASU and the jth BSU. The distance between the kth ASU and the jth facility
is traditionally defined as:

d̂(k, j) = ŵkd̃(k, j) (1)

where ŵk =
∑

i∈Ak

wi with Ak being the set of aggregated BSUs at the kth ASU. To

eliminate source A and B errors, the distance proposed in Current and Schilling
[23] is set as:

d̂(k, j) =
∑
i∈Ak

wid(i, j) (2)

Equation (2) measures the true weighted travel distance to the potential facility
from all BSUs, aggregated at ASU k. This measurement method can also eliminate
source B errors. For example, when the kth ASU is also the jth potential facility,
the traditional measurement method would set d(k, j) = 0, whereas the improved
method gives d(k, j) , 0, and hence measures the true weighted travel distance
from all BSUs in the subset Ak to the facility located at the kth ASU. Unfortunately,
this method cannot eliminate source C errors.

As mentioned in the previous section, Casillas [16] showed that the A, B, and
C errors cause two other types of error, namely the cost error (ce = f (F′ : C)− f (F′ :
C′),) and the optimality error. Aggregation effects are investigated based on 500
BSUs, which are randomly generated using m = 50, 100, 150, and 200, and p = 1, 2,
4, and 6. The results showed that the optimality error was small for small values
of p, but the error increased when the values of p and m were larger.
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Oshawa et al. [92] studied the location error and the cost error due to rounding
(either rounded up or rounded down) in the unweighted 1-median and 1-centre
problems in the one-dimensional continuous space. They denote aggregate data
as rounded data. They also investigated the effects of aggregating BSUs into the
midpoints of intervals of equal width. The main conclusions of their experiment
are (i) rounding tends to exert more serious influence on the median problem
than on the centre problem, and (ii) for median and centre problems, there was a
pattern that the bigger location error implies smaller cost error.

Aggregation error bounds for the median and the centre problems were devel-
oped by Francis and Lowe [44]. Their study was focused on the network location
problem. The error obtained from the worst objective function is used as the
minimal error bound.

Hodgson and Neuman [62] introduced a Geographical Information System
(GIS) method for eliminating source C error. The method spatially disaggregates
data as needed during the solution procedure (’on the fly’). The method also uses
Thiessen (Voronoi) overlay polygon, where every point within such a polygon
is nearer to that polygon’s centroid than to the centroid of any other polygon.
It means that the disaggregation process is based on the membership in a poly-
gon. Their method was applied to estimate the magnitude of cost estimate and
optimality errors.

Transport costing error was investigated by Ballou [7] for the median problem.
The transport costing error refers to the cost error as defined by Casillas [16],
ce = f (F′ : C) − f (F′ : C′). Ballou used 900 three-digit zip codes as initial BSUs to
cover a population of 248,000,000 people in the U.S. (Hawaii, Alaska, Puerto Rico,
and APOs) in 1990. The weight of each BSU (zip code) is based on the population
size. Coopers [22] location/allocation heuristic was also used to solve the median
problem. Ballou found that the cost error increases as p and m increase.

Fotheringham et al. [41] examined the sensitivity of the median procedure (the
objective function value and optimal locations) to the definition of spatial units
for which the demand is measured (aggregation schemes). Data of 871 BSUs from
Buffalo and New York census block was used to test the method. They aggregated
it into 800, 400, 200, 100, 50, and 25 ASUs and used p = 10 to solve the median
problems. The results showed that the level of aggregation affects the location
error more significantly than the objective function value.

A median row-column aggregation method was introduced by Francis et al.
[45] to find an aggregation that gives a small error bound, initially introduced by
Francis and Lowe [44]. The authors deal with median problems with rectilinear
distances and weight normalized to a total of unity. For given values on the
number of rows (r) and the number of columns (c), the method, which is based
on Hassin and Tamir [59], constructs an rc aggregation that minimizes the error
bound. The value of r and c may not be equal, moreover the width of each column
or row may also be different.

Hodgson et al. [64] studied the aggregation error effects on the discrete-
space p-median model. The Canada census data for Edmonton is used in their
experiment. By varying p, they calculate cost error (ce = f (F′ : C) − f (F′ : C′)) and
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optimality error (oe = f (F : C)− f (F′ : C)). The results show that when p increases,
the cost error decreases while the optimality error increases.

Murray and Gottsegen [88] investigated the influence of data aggregation on
the stability of facility locations and objective function for the planar p-median
model. Various levels of aggregation and various aggregation schemes for a fixed
level of aggregation for the planar median problem were conducted. The result
indicated that the value of the objective function ( f (F′ : C))) did not seem to
vary significantly, although the facility locations varied as a result of the level of
aggregation and aggregation method used. Like other researchers, they found
that smaller values of m gives poorer results.

Demand point aggregation procedures for both the p-median and the p-centre
for network location models were studied by Andersson et al. [2]. As the first step,
they use ’row-column’ method of Francis et al. [45] to obtain a coarse aggregation
structure (the spacing of rows and columns of the grid). The next step is to locate
the ASUs points on the subnetworks induced by the cells of the grid (using 1-
median or 1-centre). They also use the concept of a network Voronoi diagram to
find improved ASUs. They found that the level of aggregation affected the street
network structure, and that the error estimates were not too sensitive to the value
of p.

Bowerman et al. [10] investigated the demand partitioning method for reduc-
ing aggregation errors (source A, B, and C errors) in the p-median problems. They
used the method of Current and Schilling [23] to eliminate source A and B errors,
and the method of Hodgson and Neuman [62] to eliminate source C error. Data
from the Central Valley of Costa Rica were used to examine their approach. The
result showed that their method was better than that of Current and Schilling [23]
in reducing error, however the computation time needed to solve the problems
was recorded to be relatively higher.

A good review of aggregation errors for the p-median problem was provided
by Erkut and Bozkaya [39]. They introduced six type of source errors, namely
UD (assumption of uniform demand data), RA (use of a random aggregation
method), FL (focusing on location errors), EC (emphasis on cost errors), DF (use
of a different feasible solution set due to aggregation), and OA (aggregation level /
over aggregation). For the p-median problem, they also proposed some guidelines
(dos and don’ts) for aggregating spatial population data.

Zhao and Batta [115] performed a theoretical analysis of aggregation effects
for the planar median problems. The worst and average case errors were also
investigated with respect to centroid aggregation scheme and Euclidean distance.
They produced the approximate distribution of the cost error for the 1-median
problem, while the effect of source C error was closely examined for p > 1. Data
location of houses in Buffalo, New York, Ontario, and California were used to test
their analytical results.

Francis et al. [46] proposed a general model structure for location models and
provided a theory to derive error bounds for all location models. They applied
the idea of the triangle inequality with the SAND (SA short for subadditive and
ND for nondecreasing).
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Zhao and Batta [116] studied the p-median problem on a discrete and a contin-
uous network where demand could be on the links of the network. They showed
that the optimal solution can be approximated by a nodal solution. They also
demonstrated that a model with continuous link demand can be transformed
into an equivalent discrete link demand model. A method to aggregate demands
on each link was also introduced, where they argued that their method did not
introduce any aggregation errors to the problem solution.

Plastria [94] investigated how to minimise the aggregation error when select-
ing the ASUs location at which to aggregate given groups of BSUs. He studied the
p-median problem with various distance measures derived from gauge functions.
Some of his experiments focused on aggregating data at the centroid of the sub
data set. He generated randomly 2000 BSUs in the plane and aggregated them to
400 ASUs. He measured source A and B errors by varying p = 1, 3, and 5. For the
1-median problem, he found that the aggregation error decreases as the distance
between the facility and the ASU location (the centroid) increases.

Data surrogation error in p-median models was introduced by Hodgson [61].
This error occurs when an inappropriate variable is used to stand in for a target
population’s demand. He demonstrated the concept of this error for 25 Canadian
cities where the total population data is used (in place of children or elderly
citizens). He also identified the correlation of surrogation error. The conclusion
of his research was that the level of surrogation error is related to the value of p,
the dissimilarity of the target and surrogate distributions, city size, and the size
of the service areas.

Hodgson and Hewko [63] studied aggregation and surrogation error in the
p-median model using Edmonton, Canada data. The results showed that the sur-
rogation error was a more serious problem than the aggregation error (Source A, B,
and C error). They also proposed a disaggregation method to reduce aggregation
and surrogation errors.

Francis et al. [48] developed the theory and algorithms to construct an aggre-
gation that minimises the maximum of aggregation error for rectilinear distance
for the 1-median problem. The method is based on row-column aggregations and
uses the centroid as ASU location. The method does the aggregation for 1-median
problems in the plane using aggregation results for 1-median problems on the
line. The method for the 1-median problem is used to solve median problems for
p > 1. By varying the value of p = 1, 3, and 5, they found that the error can be
well-defined by a function a/mb, where a is a positive constant, b ≥ 1, and m is the
number of ASUs.

Qi and Shen [98] studied the worst-case analysis of demand point aggregation
for the Euclidean p-median problem on the plane. They utilised a ’honeycomb
heuristic’ algorithm introduced by Papadimitriou [93] to develop a ’multi-pattern
tiling’ to attain smaller worst-case aggregation error bounds. The honeycomb
heuristic works by partitioning a study area. The study area in which the demand
points are distributed is partitioned into k sub-areas (hexagon polygons). All
polygons are regular and congruent. The demand points (BSU) in each sub-area
are represented by one median (ASU) at the centre of each polygon. They found
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that the worst-case error bounds from the ’multi-pattern tiling’ algorithms are
smaller than that of the ’honeycomb heuristic’ for arbitrarily distributed demand
points.

An aggregation heuristic for large scale p-median problems was proposed by
Avella et al. [4]. They introduced a new heuristic approach based on Lagrangean
relaxation to deal with large-scale median problems. In this paper, they proposed
three main procedures, namely sub-gradient column generation, combining sub-
gradient optimization with column generation (core heuristic), and an aggrega-
tion heuristic. The main idea of sub-gradient column generation procedure is
solving the LP over a subset of variables, implicitly considering other variables,
and dynamically adding those variables when optimality conditions are violated.
The core heuristic is defined by a subset of the most promising variables found
according to the Lagrangean reduced costs, associated with the open facilities
as well as those associated with the allocation variables. They implement Cplex
with specific options to deal with larger instances. The experiments empirically
show that the core heuristic does not obtain good solution when the value of p is
relatively small. To overcome this drawback, an aggregation heuristic was intro-
duced. It is based on solving the original problem with much larger p first. The
obtained locations are then considered as centres for aggregation. The computa-
tional experiments show that their procedure provides better results compared to
the solutions found by Hansen et al. [57], and Resende and Werneck [97].

Irawan and Salhi [67] utilised an aggregation technique and Variable Neigh-
bourhood Search (VNS) for solving large-scale discrete p-median problems. A
multi-stage methodology is designed, where learning from previous stages is
taken into account when tackling the next stage. Each stage is made up of several
aggregated problems that are solved by a mini VNS. In each stage, the solutions
obtained from the aggregated problems are put together to make up a promising
subset of potential facilities. VNS is used to solve this augmented p-median prob-
lem. This multi-stage process terminates when a certain criterion is met. The last
stage is a post optimisation stage applied to the original (disaggregated) problem
using the best solution from the previous stages as an initial solution.

Irawan et al. [68] introduced a multiphase approach that incorporates de-
mand points aggregation, VNS, and an exact method for large unconditional and
conditional p-median problems. The approach is made up of four phases. The
first phase is similar to the first stage proposed by Irawan and Salhi [67] except
that a more efficient implementation of the local search is adopted to generate
promising facility sites, which are then used to solve a reduced problem in Phase
2 using VNS or an exact method. Phase 3 is an iterative learning process which
tackles the aggregated problem using as the initial solution, the solution obtained
from the previous phase. The last phase is a post optimisation phase where local
search is applied for the original problem. The proposed approach is also adapted
to cater for the conditional p-median problem with interesting results.

Salhi and Irawan [100] implemented a special data compression method using
a quadtree-based method for allocating very large demand points to their nearest
facilities while eliminating aggregation error. This allocation approach is effective
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when solving large p-median problems in the Euclidean space. The allocation
method aggregates demand points by eliminating aggregation-based allocation
error, and disaggregating them if necessary. TSP datasets up to 71009 points are
used for testing the method with encouraging results.

2.4. Aggregation Literature on Centre and Covering Problems
Some papers dealing with aggregation on centre and covering problems are

discussed in this section. A list of aggregation literature on this topic is summa-
rized in Table 5. Daskin et al. [32] investigated the aggregation effects for discrete
planar maximum covering models. They measured the aggregation errors with
the three different aggregation schemes, namely scheme A, scheme B, and Scheme
C. The type of errors includes the optimality error, the coverage error introduced
by Church and ReVelle [21], and the location error. Scheme A was based on
the relative demands of BSUs only, whereas scheme B was solely based on the
distances between the BSUs. Scheme C was based on both the demands and the
distances between BSUs. All the three aggregation schemes were tested on 335
BSUs representing demand areas in the U.S. The results showed that for scheme
A and scheme C, aggregation on demand and candidate locations produced small
coverage or optimality errors. For all schemes and any level of aggregation, lo-
cation errors are found to be big. Their finding confirms Goodchild’s [52] results
that ’aggregation has a greater effect on location decisions than on the values of
the objective function’.

Current and Schilling [24] studied aggregation errors for the planar set cov-
ering and maximal covering location models. They proposed three rules on data
aggregation, which reduce the aggregation errors. The rules were examined using
681 BSUs representing Baltimore City, Maryland. The result show that the aggre-
gation rules reduce both problem size and aggregation error. They also observed
source A, B, and C errors introduced by Hillsman and Rhoda [60], and defined
their coverage counterparts. Source A errors occur if the facility covers the ASU
but not the BSU, or the BSU is covered by a facility but not its associated ASU.
Source B errors arise when a facility is located at an ASU. There might be some
BSUs represented by this ASU that are not covered by this facility. In the covering
problem, only source C error is not present.

Rayco et al. [96] studied a grid-positioning aggregation procedure for the
centre problem with rectilinear distance. This procedure can also be utilised
to estimate the maximum error, so letting the aggregation error be kept within
tolerable limits. The procedure recognized an imposed grid structure on the
plane. The cells of the grid structure were diamond-shaped and all of the same
user-specified dimensions. The grid position was determined by minimizing an
upper bound (eb). They used both computer-generated data sets and a real-world
data set instances. The result showed that the rate of improvement in the error
measures decreases as the number of ASUs increases.

Francis et al. [49] investigated a demand point aggregation analysis for a class
of constrained location models. Here, the nearest distances of BSUs to facilities
are used in the objective function, as well as in the constraints. They utilised and
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improved the error bound introduced by Francis et al. [46], and observed the
effect of aggregation errors in both the constraints and the objectives. The method
was tested on the centre location models.

table Aggregation literature on the p-centre and set covering problems

Authors Journal Year Range of
BSUs

Range of
ASUs

Range
of p Setting

Daskin et
al.

Annals of
Operations
Research

1989 355 67, 201 4 Discrete

Current
and
Schilling

Geographical
Analysis 1990 681 185, 415 30, 70 Discrete

Rayco et al. Location Science 1997 5000 - 10000 25-2500 1, 3, 5, 7 Planar

Rayco et al.
Computers and
Operations
Research

1999 5000-10000 25-2500 1, 3, 5, 7 Planar

Francis et
al. IIE Transactions 2004 N/A N/A N/A General

Francis et
al.

Geographical
Analysis 2004 50000 and

69960

50 - 900 in
increment.

of 50
N/A Planar

Emir-
Farinas
and
Francis

Annals of
Operations
Research

2005 50000 and
69960

50 - 900 in
increment.

of 50
N/A Planar

Plastria
and Van-
haverbeke

Network Spatial
Economics 2007 3337 and

19781

103, 111,
and 128
also 340,
442, and

594

3 Discrete

Francis et
al.

Annals of
Operations
Research

2009 N/A N/A N/A General

Irawan
and Salhi

Journal of
Heuristics 2014 Up to 71009 Up to 7100 10-100 Discrete

Salhi and
Irawan

Computers and
Operations
Research

2015 Up to 71009 N/A 5-30 Discrete

Aggregation decomposition and aggregation guidelines for a class of minimax
and covering location problems were studied by Francis et al. [50]. They used
various distance types in the models on the plane. They proposed a method
to find an aggregation to attain a small error bound value. The ’square root’
formulas were introduced to support the aggregation procedure. The method can
also accommodate aggregation decomposition for location problems involving
multiple ’separate’ communities. The method was tested on computer-generated
data and real data. Firstly, they examined the method with 50,000 BSUs uniformly
distributed in a square of dimensions 1,000 by 1,000 and varied the number of
ASUs between 50 and 900. Secondly, the method was tested on 69,960 BSUs of
power transformer locations in Palm Beach County, Florida. For the latter, they
varied the number of ASUs between 50 and 3,250.
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Farinas and Francis [38] studied aggregation methods with a priori error
bounds for planar covering location models. They observed four types of ag-
gregation error in the covering location problems, namely the average violation
error (AVE), the maximum violation error (MVE), the coverage error (CE), and
the conditional average violation error (CAVE). They pointed out which of the
four errors should be considered most meaningful for a given situation. They also
established three aggregation schemes, called Independent Projection Algorithm
(IPA), Pick the Farthest (PTF), and Random Selection (RS). The schemes were
tested on the data used in Francis et al. [50]. They found that the PTF scheme
produced the smallest AVE, CAVE, and CE, whereas IPA performed better than
PTF and RS with MVE.

Plastria and Vanhaverbeke [95] proposed a pre-processing aggregation
method for competitive location models. The method prevents the loss of infor-
mation of BSUs while aggregating BSUs, and hence avoids the possible loss of
optimality. This method was applied to find the best location for a new hypermar-
ket chain in Belgium. The experiment was first conducted for Brabant dataset,
which is of a medium scale (3,337 BSUs), and then on the large scale Belgium
dataset (19,781 BSUs). They concluded that their aggregation method besides
being faster has a crucial influence on the size of BSUs.

Irawan and Salhi [69] proposed two meta-heuristics for large-scale uncondi-
tional and conditional vertex p-centre problems incorporating aggregation ap-
proach, Variable Neighbourhood Search, and exact method. Salhi and Irawan
[100] also applied a quadtree-based approach for solving large p-centre problems
in the Euclidean space.

2.5. Related Aggregation Work on Other Location Problems
Some interesting papers dealing with aggregation on other location problems

do not fit within our classification schemes. They are just briefly discussed in this
section, and their list is given in Table 6.

Sankaran [102] solved large instances of the capacitated facility location prob-
lem and proposed two types of methods. The first one relates to customer ag-
gregation, while the second concerns the judicious selection of variable-upper-
bounding constraints to be included in the initial integer-programming formula-
tion. The results showed that both methods could be relevant in solving these
large scale problems.

Limbourg and Jourquin [76] investigated aggregation errors and best poten-
tial locations on large networks in rail-road terminal locations when studying
the p-hub median location problem. They proposed a method to separate the
best potential locations in a hub-and-spoke network rail-road terminal location.
The method uses two types of input, namely the flows and clustering based
approaches to determine a set of potential locations for hub terminals. These
potential locations are then utilised as an input in optimal location method. Data
from trans-European networks was used to test their methods.

Gavriliouk [53] studied a method on aggregation to reduce aggregation errors
in hub location problems. Moreover, the author proposed a heuristic (meta-
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Table 5: Aggregation literature on others related location problems

Authors Journal Year Setting Description

Sankaran European Journal of
Operational Research 2007 Discrete Capacitated Facility

Location Problem

Limbourg and
Jourquin

European Journal of
Transport and
Infrastructure Research

2007 Discrete p-Hub Median Problem

Gavriliouk Computers and
Operations Research 2009 Network Hub Location Problem

Zeng et al. Geographical Analysis 2010 Network Flow-Intercepting
Problem

algorithm) based on aggregation for p-hub centre problems and errors measure.
The method was tested using generated large data sets uniformly distributed on
a square of size 1,000,000 x 1,000,000, where total numbers of BSUs are 300, 400,
500, 600, and 1000. By varying p = 2, 3, 5, 7, 10, and 20, the number of ASUs
is set to 10% of the number of BSUs. It was found that for each data set, the
exact procedure (using CPLEX software) did not find a feasible solution within
5 minutes of CPU time, whereas the heuristic (meta-algorithm) method obtained
solutions in each case, though the quality of the solution can not be judged.

Aggregating data for the flow-intercepting location model was studied by
Zeng et al. [114]. Their research utilised GIS, optimization, and heuristic tech-
nologies to establish a method and a framework of aggregating data for the
standard flow-intercepting location model. The authors applied the method to
a real-world transportation system of Edmonton, Alberta, involving 395 traffic
zones, 2,211 network nodes, 6,211 links, and 149,644 nonzero origin-destination
(O-D) flow pairs for the afternoon traffic peak in 2001. This framework/method
proved to be efficient in solving this real life problem.

3. A REVIEW ON SOLVING LARGE LOCATION PROBLEMS WITHOUT
AGGREGATION

A review on solving large p-median problems without the use of aggregation
techniques is presented here. This is followed by some studies on the p-centre
problem.

3.1. A Review on solving p-median problems with a focus on large problems
The p-median problem is categorized as NP-hard (Kariv and Hakimi [72]).

For relatively large problems, optimal solutions may not be found, and hence
heuristic or metaheuristic methods are usually considered to be the best way to
solve such problems. Mladenovic et al. [86] provided an excellent review on the
p-median problem focusing on metaheuristic methods.
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Table 6: Papers dealing with large p-median problem
Authors Journal Year Description

Taillard E.D. Journal of Heuristics 2003 Centroid Clustering Problem based
heuristics

Avella et al. Mathematical
Programming 2007 Branch-and-Cut-and-Price

Algorithm with reduction schemes

Hansen et al. Data Mining and
Knowledge Discovery 2009

Primal-dual variable
neighbourhood search and
decomposition/reduced VNS

Garcia et al. INFORMS Journal on
Computing 2010 Covering based with a radius

formulation

The interchange method is one of the most commonly used heuristic for solv-
ing the p-median problem. This method can be applied either alone or as a sub-
routine, as part of more complex methods (e.g. within metaheuristics). Whitaker
[112] introduced a focal method known as the fast interchange heuristic. This
method was applied by Hansen and Mladenovic [58] as a local search within a
Variable Neighbourhood Search (VNS). The interchange local search using large
neighbourhood structure was also suggested by Kochetov et al. [75]. An efficient
implementation of the interchange method was produced by Resende and Wer-
neck [97], who embedded an efficient data structure within the search to avoid
recomputing already computed information. They used the interchange method
within their proposed heuristics, which they refer to as the fast swap-based lo-
cal search procedure. This heuristic is very efficient but could require an extra
memory due to the use of a two dimensional matrix as part of its data structure.

In this section, we provide a few papers that deal with large p-median problems
without using aggregation techniques. These papers are briefly summarised in
Table 7.

Taillard [105] introduced heuristic methods to solve hard centroid clustering
problems such as the p-median, the sum of square clustering, and the multi-source
Webber problems. He proposed three methods for solving such problems, namely
the candidate list search (CLS), local optimization (LOPT), and decomposition
(DEC) procedures. CLS is based on a greedy procedure. This method randomly
perturbs a solution that is locally optimal according to the alternate location-
allocation procedure. LOPT optimizes the position of a given number of centres
dynamically. The heart of LOPT is to choose a centre, a few of its closest centres
and the set entities allocated to them to create a subproblem. DEC decomposes
the problem into subproblems, which can be solved separately. His experiments
show that these methods are very efficient and fast in producing better quality
solutions for the medium size instances. The results for instances with more than
85,000 entities and 15,000 centres were also reported.

A computational study of large-scale p-median problems is conducted by
Avella et al. [5]. They used Branch-and-Cut-and-Price algorithm to deal with
such problems. The main components of this algorithm are delay column-and-
row generation to avoid the excessive memory problem, and cutting planes to
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strengthen the formulation. In the former component, this method exploits the
special structure of the formulation to solve the LP-relaxation. The latter one aims
to strengthen the formulation by limiting the size of the enumeration tree. The
method provided good solutions for instances with the number of vertices being
less than and equal to 3,795.

Hansen et al. [57] introduced a primal-dual variable neighbourhood search
(VNS) metaheuristic for solving large p-median clustering problems. Within the
search, decomposition is used to obtain better solutions and to reduce computa-
tional time. The authors used Reduced VNS to get good initial solutions, which
are then used in their VNS with decomposition to tackle large problems. In addi-
tion, they provided good lower bounds via VNS to guarantee a small optimality
gap. An efficient data structure based on Resende and Werneck procedure is im-
plemented successfully within an existing local search. Their experiments show
that VNS with decomposition is the best approach for solving very large instances.
It is also observed that the difficulty of the problem depends not only on the value
of n (the number of customers) but also on the value of p (the number of facilities).

Garcia et al. [51] investigated large p-median problems using a radius formu-
lation. They proposed a model based on a covering-based formulation containing
a small subset of constraints and variables. This method is found to be efficient
due to a powerful branch-and-bound framework based on dynamic reliability
branching within Cplex. Their experiments show that the method is able to solve
large p-median problems (n = 24,978) especially when p is relatively large, as this
tends to reduce the problem complexity within their formulation.

3.2. A review on solving p-centre problems
In this subsection, we review some papers that investigate the p-centre prob-

lem. Hakimi [54] initially introduced the p-centre problem where he investigated
an absolute 1-centre problem on a graph. Minieka [82] proposed a basic algo-
rithm based on solving a finite sequence of set covering problems for solving the
problem when p > 1. The weighted case of the p-centre problem was investigated
by Kariv and Hakimi [71], who concluded that the p-centre problem is NP-hard.

Polynomially bounded procedures for solving the p-centre and covering prob-
lems on a tree network were suggested by Tansel et al. [108]. Tansel et al. [106][107]
provided an excellent review of network location problems including the p-centre
problem. Two heuristics and an optimal algorithm to solve the p-centre problem
for a given value of p in polynomial time in n were introduced by Drezner [29].
For relatively small p, algorithms for finding p-centres on a weighted tree were
suggested by Jaeger and Kariv [70].

A useful and interesting recursive type algorithm using the Set Covering
Problem (SCP) for attaining an optimal solution for the problem was designed
by Daskin [25]. The approach is based on Minieka’s method where the bisection
technique is used to decrease the gap between upper and lower bounds. A
spanning tree approach on cyclic networks was introduced by Bozkaya and Tansel
[11]. Shaw [103] proposed a unified limited column generation approach for
facility problems including the p-centre problem on trees.
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Efficient exact methods for the vertex p-centre problem were studied by Daskin
[26] and Ilhan and Pinar [66]. In the former, the problem was formulated as a
maximum set covering sub-problem and then Lagrangean Relaxation is used
to solve the problem. The latter designed an approach which comprises two
stages, namely the LP-Phase and the IP-Phase, where in Stage 1 sub-problems
with a certain covering distance are systematically discarded. A method called
Dominant was introduced by Caruso et al. [15]. Efficient meta-heuristics (tabu
search and variable neighbourhood search) were implemented by Mladenovic et
al. [87] with excellent results. Minieka’s approach is utilised by Elloumi et al.
[37], incorporating a greedy heuristic and the IP formulation of the sub-problem
for solving the problem optimally.

Al-Khedhairi and Salhi [3] proposed two enhancements to improve Daskin
[25] and Ilhan and Pinar’s [66] method. The objective of the enhancements is to
decrease the number of calls to the SCPs. The first approach records the gaps in the
distance matrix which are efficiently sorted, while the second approach explores
appropriate jumps in the covering distance. An efficient approach by modelling
the network as an interval graph was investigated by Cheng et al. [20]. Chen and
Chen [18] suggested relaxation approaches for both the continuous and discrete
p-centre problems. They solve optimally several smaller reduced problems first,
then augmented them gradually by adding ’k’ customers at a time, where k is
a parameter that needs to be defined, which raise the question of its value so
as the choice of the ’k’ points to be added. The idea is that when the optimal
solution of the subproblem happens to be feasible for the entire problem, the
search terminates with the current solution as the optimal solution. The question
is the choice of the value of k as well as the choice of the k points to be added.

Salhi and Al-Khedhairi [99] enhanced the method of Al-Khedhairi and Salhi
even further by incorporating heuristic information into exact methods. Tight
lower bounds are generated systematically once a good upper bound is found,
making the search converge faster. Salhi and Sari [101] suggested a multilevel
type meta-heuristic to obtain tight upper bounds which are then utilised to derive
promising lower bounds. A bee colony optimization heuristic algorithm and a
non-deterministic Voronoi diagram algorithm are investigated by Davidovic et al.
[28] for the unconstrained and constrained p-centre problem respectively.

A double bounded method based on two-element restrictions was suggested
by Calik and Tansel [14] to attain the optimal solution by solving a series of simple
structured integer programs. Lu and Sheu [79] studied a robust vertex p-centre
model for locating urgent relief distribution centres, while Lu [78] recently inves-
tigated a generalized weighted vertex p-centre model that represents uncertain
nodal weights and edge lengths.

4. A REVIEW OF THE CONDITIONAL LOCATION PROBLEMS

Minieka [83] initially introduced the conditional location problem where he
studied conditional centers and medians on a graph. Drezner [30] explained that
conditional p-centre problems can be solved by solving O(lo1n) p-centre problems.
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In other words, an effective algorithm for the p-centre problem can be adapted
for the conditional problem.

An algorithm that requires the one-time solution of an unconditional (p +
1) center or (p + 1) median for solving the conditional (p + 1) center or (p +
1) median on networks was developed by Berman and Simchi-Levi [9]. Chen
[17] designed a method for solving minisum and minimax conditional location-
allocation problems with p ≥ 1.

Drezner [33] developed a general heuristic for the conditional p-median prob-
lem on both network and the plane, where he introduced the term ’(p, q) median
problem’. Let Q present the set of existing facilities where Q ⊂ J. Drezner [33]
modified the objective function for the p-median problem as follow:

Z =
∑
i∈I

wi

[
Min
{

min
j∈Q
{d(i, j)}, min

j∈J, j<Q
{d(i, j)}

}]
(3)

Because Di = min j∈Q{d(i, j)} can be calculated for each i ∈ I beforehand, equation
(3) can be rewritten as :

Z =
∑
i∈I

wi

[
Min
{

Di, min
j∈J, j<Q

{d(i, j)}
}]

(4)

The introduction of equation (4) makes computation more efficient as unnecessary
calculations can be avoided.

A method for solving both the conditional p-median and p-centre problems
was investigated by Berman and Drezner [8]. The method requires one-time solu-
tion of an unconditional p-median and p-centre problem incorporating the shortest
distance matrix. Chen and Chen [19] proposed a relaxation-based algorithm for
solving both the conditional discrete and continuous p-centre problems.

The conditional and unconditional p-centre problems using a modified har-
mony search algorithm is studied by Kaveh and Nasr [74]. Kaveh and Esfahani
[73] also investigated a hybridization approach incorporating a harmony search
and a greedy heuristic for solving conditional p-median problems. Recently,
Irawan et al. [68] designed a multiphase approach using demand points aggrega-
tion, VNS, and an exact method for solving large conditional p-median problems.
The method is tested on TSP datasets consisting of up to 71,009 points with various
values of p.

5. CONCLUSIONS AND SUGGESTIONS

This paper presents a review of selected papers related to large-scale location
problems focussing on the p-median, the p-centre, and related location problems.
The division made in this review is mainly based on two categories of approaches,
namely with and without aggregation. The former describes aggregation error
measurements, papers related to aggregation on the p-median problem, aggre-
gation on the p-centre, and the set covering problems, as well as other related
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location problems. The latter discusses papers devoted to solving large p-median
problems without aggregation and the p-centre problem in general. In addition,
we also review some papers related to conditional location problems.

We highlight some research aspects that we believe to be worth pursuing . As
optimal solutions can be found more efficiently for the vertex p-centre problem
using the SCP-based methodology, approaches that integrate heuristics and exact
method regarding aggregation, known as matheuristics, could be worth explor-
ing. The above approach could also be applied to the region coverage problem
instead of using points coverage. The partition of the area into a suitable number
of appropriate polygons is part of the challenge. This problem could also be inves-
tigated for the case of continuous location where the facilities do not have to be on
potential sites. This problem is obviously more difficult but mathematically more
challenging and rewarding. In this review we focussed on problems with two
dimensions, but can be extended to three dimensions to cater for the depth or the
height of the siting of the facilities, as in the case of locating electrical protection
devices on the posts, speed cameras on the roads or even safety cameras on the
rail networks, among others. The methodology would be even more challenging
if adapted to data mining. This is one of the hot topics that our location experience
could be made use of.
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