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Abstract: This paper presents new modifications of Variable Neighborhood
Search approach for solving the file transfer scheduling problem. To obtain
better solutions in a small neighborhood of a current solution, we implement
two new local search procedures. As Gaussian Variable Neighborhood Search
showed promising results when solving continuous optimization problems, its
implementation in solving the discrete file transfer scheduling problem is also
presented. In order to apply this continuous optimization method to solve the
discrete problem, mapping of uncountable set of feasible solutions into a finite set
is performed.

Both local search modifications gave better results for the large size instances,
as well as better average performance for medium and large size instances. One
local search modification achieved significant acceleration of the algorithm. The
numerical experiments showed that the results obtained by Gaussian modifica-
tions are comparable with the results obtained by standard VNS based algorithms,
developed for combinatorial optimization. In some cases Gaussian modifications
gave even better results.
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1. INTRODUCTION

The standard form of the optimization problem is given with:

min{ f (x) | x ∈ X,X ⊆ S} (1)

where S is a solution space, X is a set of feasible solutions, x is a feasible solution,
and f is an objective function. In the case when S is a finite or countable infinite
set, this is a problem of combinatorial (discrete) optimization. On the other hand,
when S ⊆ Rn, it is a problem of continuous optimization.

Variable Neighborhood Search (VNS) [11, 8] has shown to be a powerful tool
for solving both discrete and continuous optimization problems. The basic idea
of this method is to explore a set of predefined neighborhoods in search for
a better solution. Systematically changing these neighborhoods, the algorithm
tries to escape from the current local minimum. Shaking and local search steps
perform this exploration. In [3] authors presented a new VNS-based heuristic for
solving continuous optimization problems, so called Gauss-VNS. The main idea
of this approach is to replace the class of neighborhoods {Nk(x)}1≤k≤kmax centered
at point x by a class of probability distributions {Pk(x)}1≤k≤kmax . For generating a
random point in the neighborhood of the incumbent solution in shaking step,
the Gaussian distribution was used. To the best of the authors knowledge, this
approach for solving continuous optimization problems has never been used for
any discrete problem. Since the results obtained by Gauss-VNS for continuous
optimization were comparable with other heuristics and some advantages of this
approach were shown, in this paper we considered the utilization of Gauss-VNS
for discrete File transfer scheduling problem.

File transfer scheduling problem (FTSP) was introduced and proved to be NP-
complete by E.G. Coffman et al. in [4]. In this problem, a number of large files
should be transferred between various nodes of a computer network. For each
file, the amount of time needed to perform its transfer is given. Each computer in
the network has limited number of communication ports, i.e. the upper limit of
number of file transfers it can handle at the same time. Forwarding is not allowed,
meaning that each file has to be transferred directly from its starting point to
its destination, without involving any other intermediary computer. Also, it is
assumed that when the file transfer starts, it continues without any interruption
until its completion. The objective of FTSP consists of finding a schedule of file
transfers so the total time for transfer process is minimal.

The instance of FTSP consists of an undirected multigraph G = (V,E), which
is called the file transfer graph. The set of vertices V of the graph G correspond
to the set of nodes of a computer network. Each vertex v ∈ V is labeled by a
positive integer p(v), representing its port constraint, i.e. the sum of uploads and
downloads which that particular node (computer) can handle simultaneously.
The set of edges E correspond to the set of files that should be transferred. Each
edge e ∈ E is labeled by an integer L(e), representing the amount of time (expressed
in any of time units) needed for transferring that file, represented by the edge e.
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For a given graph G, a schedule of file transfers can be represented as a function
s : E → [0,∞) which assigns a starting time s(e) to each edge e ∈ E, such that for
each vertex v ∈ V, and time t ≥ 0∣∣∣{e : v is an end point of e and s(e) ≤ t < s(e) + L(e)}

∣∣∣ ≤ p(v) . (2)

The makespan length of a schedule s is defined as the largest finishing time
moment (the first time moment when all file transfers are completed), i.e. the
maximum of s(e) + L(e) over all edges e ∈ E. Given a file transfer graph G, the goal
is to find a schedule s with the minimum possible makespan.

The optimal schedule length OPT(G) for any graph G must satisfy the con-
straint

OPT(G) ≥ max
u
d

∑
u
/pue , (3)

where
∑

u =
∑

e∈Eu
L(e) is the sum of times required for transferring all files from

Eu, where Eu is the set of files which should be sent or received by the vertex u, and
pu denotes the port constraint for the vertex u. The right hand side of inequality
(3) is called the elementary lower bound for FTSP.

File transfer scheduling problem and its modifications have been studied ex-
tensively [10, 15, 1, 9, 16]. A Variable Neighborhood Search algorithm for solving
FTSP was designed in [5]. The experimental results were carried out on instances
of up to 100 vertices and 500 files that should be transferred. Optimality of VNS
solutions on smaller size instances has been verified by total enumeration, and for
several larger instances optimality followed from reaching the elementary lower
bound of the problem.

In [6], an integer linear programming (ILP) formulation for solving FTSP was
introduced. Using CPLEX and Gurobi solvers, based on proposed ILP problem
formulation, authors obtained results on extended set of instances. Numerical
results showed that both solvers were able to produce optimal solutions on in-
stances up to 40 vertices and 50 edges in reasonable time. This ILP formulation
was improved in [7], so the CPLEX and/or Gurobi solvers were able to produce
optimal solutions for some larger instances.

1.1. VNS for the file transfer scheduling problem
Variable Neighborhood Search has already been successfully used for solving

various combinatorial optimization problems [12, 13, 14]. VNS proposed in [5],
designed for solving the file transfer scheduling problem, was implemented as
follows. The solution of FTSP was denoted as a n-dimensional vector x = (x1, ..., xn)
with integer values 0 ≤ xk ≤ n−1 where n is the number of edges in FTSP. Elements
xk of this vector represent the priorities assigned to each edge ek in the graph.

The objective function value. For a given solution x, the objective function
value was calculated in the following way. In the first step, the edges were sorted
according to their priority. Using this sorted array, the unique schedule s was
formed by starting from the time t = 0 and trying to find the first feasible edge
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to which the starting time t will be assigned. The same procedure was repeated
for the remaining unscheduled edges. If no edge could be started at time t, t was
increased by 1, and the whole procedure was repeated until all edges ek got their
starting times tk. For the obtained schedule, the value of the objective function
f (x) was defined as f (x) = max1≤k≤n(tk + L(ek)).

Building an initial solution. An initial feasible solution x was taken as a
random permutation of integer values 0, 1, ...,n − 1.

Neighborhood structures and shaking procedure. For given k, the neigh-
borhood Nk(x) contains all priority vectors which may differ from the current
solution x in most k index positions. In the shaking step, a new solution x′ ∈ Nk(x)
is generated by forming a vector (i1, ..., ik) of k distinct random integers from the
set {0, 1, ...,n − 1}, which represent the indices of elements in the solution vector
that will be changed. The random permutation of elements from the vector x at
those positions is created by forming the vector (p1, ..., pk). Finally, the vector x′ is
created from x by modifying its k elements as x′(i j) = p j, j = 1, 2, ..., k.

Local search procedure. The neighborhood of the solution x′, which was ex-
plored for potentially better solution x′′, consists of all vectors obtained from x′ by
swapping two of its elements. For this exploration, the first improvement search
strategy was used. The local search terminates when the entire neighborhood of
the current solution is searched, and no further improvement is possible.

After the local search, if the obtained solution x′′ is better than x ( f (x′′) < f (x)),
the algorithm moves to this new solution x := x′′ and the search continues with
the same neighborhood size Nk(x). If f (x′′) > f (x), the search is repeated with
the same x and the next neighborhood Nk+1(x). In the case when f (x′′) = f (x),
with some predefined probability p, the algorithm moves to this new solution and
continues the search from it, and with probability 1 − p it repeats the search with
the same x and the next neighborhood.

2. IMPROVED VNS FOR FILE TRANSFER SCHEDULING PROBLEM

In order to improve the local search procedure for VNS proposed in [5], two
new local search implementations are presented in this paper.

2.1. Variable Neighborhood Descent
The idea for this local search modification is to explore first the solutions which

are ”close” to the solution x′. This strategy is based on the assumption that, in
VNS representation of the solution of FTSP, ”close” elements of the priority vector
have greater correlation than the elements which are on a ”larger” distance.

In order to implement this kind of exploration within the local search proce-
dure, the set of smaller neighborhoods will be used instead of only one neighbor-
hood. In this way, a General Variable Neighborhood Search (GVNS) is designed
for FTSP. GVNS is a variant of VNS, where the deterministic Variable Neighbor-
hood Descent (VND) is used as the local search.

The neighborhood which is explored in local search for a better solution start-
ing from x′ is divided into several smaller neighborhoods as follows:
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• The neighborhood N1(x′) consists of all vectors obtained from the solution
x′ by swapping two of its consecutive elements.

• The neighborhoodN2(x′) consists of all vectors obtained from the solution x′

by swapping two of its elements, which have exactly one element between
them, i.e. by swapping each x′(i) and x′(i + 2), i = 0, ...,n − 3.

• The neighborhoodNl(x′), l = 1, ...,n−1, consists of all vectors obtained from
the solution x′ by swapping two of its elements with exactly l − 1 elements
between them.

The exploration of each neighborhood Nl(x′), l = 1, ...,n − 1 is faster than the
exploration of the neighborhood for local search described in [5]. On the other
hand, the union of all the neighborhoodsN1, ...,Nn−1 is equal to the neighborhood
where each two of the elements are swapped, so no local minimum will be missed
by this modification. Note that the neighborhood structures used in local search
are different from the neighborhoods in the shaking procedure.

In this VND implementation, the local search procedure explores n − 1 neigh-
borhoods systematically as follows:

• Procedure starts searching for better solution by exploring the neighborhood
N1(x′).

• If better solution is not found in the neighborhood Nk(x′), k ≤ n − 2, the
search continues in the next neighborhoodNk+1(x′).

• If better solution is found in any neighborhood, it becomes new incumbent
solution and the local search procedure starts over from the neighborhood
N1 of this new solution.

• If better solution is not found in the last neighborhood Nn−1(x′), the local
search stops, and the best found solution is denoted as x′′.

Performing the local search procedure in this way,N1 is the the most explored
neighborhood since every time when a better solution is found inNl, l = 2, ...,n−1,
the search continues from the neighborhood N1. In this way, ”closer” solutions
will be found more quickly. On the other hand, the search in the neighborhoodNl
will be performed only when no improvement was found in all neighborhoods
N1, ...,Nl−1, which may not happen so often.

The details of the GVNS for the FTSP are given in a pseudo-code in Figure 1.

Example 2.1. Consider the simple example of the local search procedure execution. Let
the vector x′, obtained from the shaking procedure, contain 5 elements: x′ = (1, 2, 3, 4, 5).
Let the vectors p1 = (1, 2, 4, 3, 5) and p2 = (1, 4, 2, 3, 5) be the only solutions with smaller
objective function value, such that f (x′) > f (p1) > f (p2). The local search procedure, de-
fined in [5], consists of the next swap moves: x′ = (1, 2, 3, 4, 5), (2, 1, 3, 4, 5), (3, 2, 1, 4, 5),
(4, 2, 3, 1, 5), (5, 2, 3, 4, 1), (1, 3, 2, 4, 5), (1, 4, 3, 2, 5), (1, 5, 3, 4, 2), p1 = (1, 2, 4, 3, 5). Af-
ter obtaining the first better solution p1, the search continues in the neighborhood of the
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/* Initialization */
Select a set of neighborhood structures Nk, k = kmin, . . . , kmax

that will be used in the search;
Select a set of neighborhood structuresNl, l = 1, . . . ,n − 1

that will be used in the local search procedure;
Randomly choose an arbitrary initial point x ∈ X and set

x∗ ← x, f ∗ ← f (x);
repeat the following steps until the stopping criterion is met

Set k← kmin;
1: repeat the following steps until k > kmax

/* Shaking */
Generate at random a point x′ ∈ Nk(x∗) ;
/* Local search (VND) */
Set l← 1;
repeat the following steps until l > n − 1

/* Explore the current neighborhood */
Find the local minimum x′′ in the neighborhoodNl(x′);
/* Move or not? */
if f (x′′) < f (x′) then

Set x′ ← x′′ and l← 1;
else

Set l← l + 1;
end
/* Move or not? */
if f (x′′) < f ∗ then

Set x∗ ← x′′, f ∗ ← f (x′′) and goto 1;
elseif f (x′′) > f ∗ then

Set k← k + 1;
else

With probability p set x∗ ← x′′, f ∗ ← f (x′′) and goto 1,
and with probability p − 1 set k← k + 1;

end
end
Stop. Point x∗ is an approximative solution of the problem.

Figure 1: The GVND method for FTSP.
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/* Local search */
Set l← 1;
repeat the following steps until l > 1

/* Explore the neighborhoodN1 */
Find the local minimum x′′ in the neighborhoodN1(x′);
/* Move or not? */
if f (x′′) < f (x′) then

Set x′ ← x′′ and l← 1;
else

Set l← l + 1;
end

Figure 2: The local search procedure for VNS-LS1 method for FTSP.

solution p1: (2, 1, 4, 3, 5), (4, 2, 1, 3, 5), (3, 2, 4, 1, 5), (5, 2, 4, 3, 1), p2 = (1, 4, 2, 3, 5). The
total number of iterations is 13.

On the other hand, the VND described above consists of the following swap moves:
x′ = (1, 2, 3, 4, 5), (2, 1, 3, 4, 5), (1, 3, 2, 4, 5), p1 = (1, 2, 4, 3, 5), (2, 1, 4, 3, 5),
p2 = (1, 4, 2, 3, 5). The number of iterations is 5. As it can be seen, in this case VND
algorithm reaches the local minimum much faster. In both cases, after obtaining the
solution p2 = (1, 4, 2, 3, 5), the same number of iterations will be performed until the local
search procedure in (unsuccessful) search for possible better solution ends.

2.2. Acceleration of the local search
The local search procedures, described in [5] and in Subsection 2.1, are pro-

found since both explore the neighborhood of the solution x′, which consists of
swapping each of its two elements, just in a different order. The main drawback
of these approaches is the long execution time. One possible way to speed up
significantly the local search procedure is to reduce the neighborhood of x′ that
will be explored. In this way, less time will be spent in swapping the elements
of vector x′ and calculating the objective function value for each newly obtained
vector.

Let the only neighborhood to be used in the local search procedure be the
N1 neighborhood, described in Subsection 2.1. In this modification, the only
neighborhood N1(x′) that will be explored in the local search procedure consists
of all solutions that could be reached from x′ by swapping two of its consecutive
elements. If the better solution x′′ is found, it becomes the new incumbent solution
x′ := x′′, and the whole local search procedure starts again from the neighborhood
N1(x′) of the new solution. If no improvement can be made, the local search is
over.

The modification of VNS with local search procedure described above is de-
noted as VNS-LS1, and the details of corresponding local search are given in
pseudo-code in Figure 2.
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In this way, the neighborhood which will be explored in the local search
is reduced, and VNS algorithm is significantly accelerated. On the other hand,
relying only on the fact that the local minima are ”close” to each other, it is possible
to omit some better solutions at ”larger” distance. Despite this potential flaw, it
is possible to reach a better solution which, despite the thorough exploration,
was not reachable by the local search procedures from [5]. The following simple
example illustrates this observation.

Example 2.2. Let the vector x′, obtained from the shaking procedure, contain 5 ele-
ments: x′ = (1, 2, 3, 4, 5). Let the vectors p1 = (1, 2, 4, 3, 5), p2 = (4, 2, 1, 3, 5) and
p3 = (1, 4, 2, 3, 5) be the only solutions with smaller objective function values, such that
f (x′) > f (p1) > f (p2) > f (p3). The local search procedure, defined in [5], consists
of the following swap moves: x′ = (1, 2, 3, 4, 5), (2, 1, 3, 4, 5), (3, 2, 1, 4, 5), (4, 2, 3, 1, 5),
(5, 2, 3, 4, 1), (1, 3, 2, 4, 5), (1, 4, 3, 2, 5), (1, 5, 3, 4, 2), p1 = (1, 2, 4, 3, 5). After obtain-
ing the solution p1, the search continues in the first neighborhood of the solution p1:
(2, 1, 4, 3, 5), p2 = (4, 2, 1, 3, 5). Vectors p2 = (4, 2, 1, 3, 5) and p3 = (1, 4, 2, 3, 5) differ at
tree positions, and it is clear that by swapping either two of them in p2, it is not possible
to reach the solution p3 with smaller objective function value.

On the other hand, the local search from VNS-LS1 algorithm consists of the fol-
lowing swap moves: x′ = (1, 2, 3, 4, 5), (2, 1, 3, 4, 5), (1, 3, 2, 4, 5), p1 = (1, 2, 4, 3, 5),
(2, 1, 4, 3, 5), p3 = (1, 4, 2, 3, 5). In this way, the local search procedure from VNS-LS1
procedure reached the solution p3, which was not reachable with the local search from
GVNS.

Comparing the local search procedures from GVNS and VNS-LS1, it is clear
that VND can reach some better solutions by thorough exploration trough the
neighborhoods N2,...,Nn−1, which are not reachable within the local search from
VNS-LS1. But, on the other hand, local search from VNS-LS1 is much faster.

3. GAUSS-VNS FOR FILE TRANSFER SCHEDULING PROBLEM

In the classic VNS-based heuristics the number of different neighborhoods
of some incumbent solution is finite. As a consequence, one can reach only the
points from these bounded neighborhoods, but not an arbitrary point from the
solution space. In this way, one may not reach the region of attraction of the true
global optimum. In order to be able to reach arbitrary point from the solution
space, one may chose a very large number kmax and the largest neighborhood,
but this approach is not efficient enough. In [3] authors presented a new variant
of VNS, Gauss-VNS, which avoids this limitation. In Gauss-VNS, instead of
defining a sequence of neighborhoods N1(x), . . . ,Nkmax (x), a sequence of random
point distributions for shaking stepP1(x), . . . ,Pkmax (x), are defined. For simplicity,
they assumed that each Pk(x) is an n-variate Gaussian distribution centered at x.
With such an approach, one can jump from an incumbent x to any trial point in
the solution space.
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In Gauss-VNS approach, since Pk(x) is a multivariate Gaussian distribution
with mean x and covariance matrix Σk, a random values following this distribu-
tion can be easily obtained from n independent values z1, . . . , zn of a univariate
Gaussian distribution with mean 0 and variance 1. Let Σk = LkL>k be the Cholesky
decomposition of the symmetric positive definite matrix Σk. The random vector
x + Lkz, with z = (z1, . . . , zn) is distributed as Pk(x). If the covariance matrices Σk
are chosen to be multiples of the identity matrix I, Σk = σ2

kI, k = 1, 2, . . . , kmax, the
Cholesky decomposition is simply Σk = (σkI) (σkI)> .

In order to adapt Gauss-VNS for solving the discrete FTSP, the neighborhoods
Nk(x) will no longer exist. The only neighborhood used in the search process will
be equal to the entire solution space. In the shaking step, a solution x′, repre-
senting the priorities assigned to edges ek, should be chosen using the Gaussian
distribution (instead of previously used uniform distribution).

In continuous global optimization, the set of feasible solutions is uncountable,
while in the case of the discrete FTSP this set is finite, so it is necessary to make
a mapping from the uncountable to this finite set. For solving FTSP, the integer
numbers were used in solution representation, which would be modified to accept
real numbers in order to apply continuous Gauss-VNS. For creating the unique
schedule of the file transfers, the priorities of the edges were compared, thus it is
necessary to adapt the new solution representation. The vector with integer edge
priorities will be replaced by the vector with continuous edge weights. Using this
weight representation, the principle for creating the unique file transfer schedule
remains the same: the edge with the larger weight have the priority over the edges
with smaller weight. After obtaining the transfer schedule, all other calculations
over this schedule do not use the weights, so no other adaptation is necessary.

Using this weight representation of the solution, it is clear that an uncount-
able number of solutions can be assigned to the same schedule. For example,
weight vectors x1 = (2.8, 3.4, 1.1) and x2 = (2.8, 3.3, 1.1) have the same transfer
schedule: the file represented by edge e2 will start its transfer first, followed by
files represented by edges e1 and e3, respectively.

The realization of mapping uncountable set of feasible solutions into a finite set
makes this application of Gauss-VNS interesting. Although Gauss-VNS showed
promising results for solving the problems of continuous optimization, it is natural
to ask if after realization of this kind of mapping, its efficiency will be preserved.
In other words, the possible outcome may be that, through iterations, weight
vectors will change, but none of these changes would result in changing the
transfer schedule.

Taking previous considerations and changes of VNS into account, Gauss-VNS
algorithm for solving FTSP can be described as follows. The solution of FTSP is
represented by a n-dimensional vector x = (x1, ..., xn) with real values, where n is
the number of edges in FTSP. Vector elements represent the weights assigned to
each edge ek in the graph.

The objective function value. For a given solution x, the objective function
value is calculated in the similar way as in previous VNS implementation. All
edges are sorted according to their weights. In the case of equal weight values,
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the edge with larger length has priority, and in the case of equal length, the edge
with smaller index has priority. Using this sorted array, the unique schedule s
and the objective function value are obtained in the same way as previously.

The shaking procedure. In the shaking procedure, the new vector of edge
weights x′ will be chosen using the Gaussian distribution with mean x (where x
is the incumbent solution), and a variance σk. It is necessary to define in advance
these variances that will be used in this step. Parameter k, kmin ≤ k ≤ kmax in
this modification represents the index of the element from the set of predefined
variances σkmin , ..., σkmax to be used in current iteration. Since the parameter k is
representing the index, kmin = 1 is an obvious choice.

For the given k, in the shaking procedure Gauss-VNS generates a new solution
x′ according to the following steps:

• Form n independent values z1, . . . , zn using the Gaussian distribution with
mean 0 and variance 1.

• Form the vector x′ as x′ = x + z · σk.

For generating univariate Gaussian variables zi, the well known Ahrens-Dieter
algorithm [2] was used.

Local search procedure. After obtaining the solution x′ in the shaking step,
any of three previously defined local search algorithms can be applied. In that
way, three new modifications of VNS can be defined:

• Gauss-VNS - The neighborhood to be explored for potentially better solution
x′′ consists of all vectors obtained from x′ by swapping two of its elements.

• Gauss-GVNS - Using VND as the local search trough the neighborhoods
Nl(x′), l = 2, ...,n − 1 described in the Subsection 2.1.

• Gauss-VNS-LS1 - Using the only one neighborhood N1(x′) for exploration
in the local search procedure, as described in Subsection 2.2.

In all three modifications, the first improvement strategy was used. Making
the decision whether the algorithm should move to a solution obtained by local
search x′′ or not is the same as before. The steps of VNS modifications using the
Gaussian distribution are given on the pseudo-code on Figure 3.

In general, it is not easy to perform the discretization of the Gauss-VNS ap-
proach. The solution representation of FTSP from [5] was a good base since it
was possible to change the values from the solution vector from integer to real
numbers without changing other aspects of the algorithm. For the other problems
of discrete optimization, for which a discrete VNS approach is already developed,
it is not obvious if it can be adapted to the Gauss-VNS approach.

4. EXPERIMENTAL RESULTS

This section contains the experimental results obtained by all new VNS modi-
fications for solving FTSP, presented in this paper. All computations were carried
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/* Initialization */
Select the set of covariance matrices Σk , k = 1, . . . , kmax;
Randomly choose an arbitrary initial point x ∈ X and set

x∗ ← x, f ∗ ← f (x);
repeat the following steps until the stopping criterion is met

Set k← 1;
1: repeat the following steps until k > kmax

/* Shaking */
Generate x′ from a Gaussian distribution with
mean x∗ and covariance matrix Σk;
/* Local search */
Apply some local search method with x′ as initial solution

to obtain a local minimum x′′ of the problem;
/* Move or not? */
if f (x′′) < f ∗ then

Set x∗ ← x′′, f ∗ ← f (x′′) and goto 1;
elseif f (x′′) > f ∗ then

Set k← k + 1;
else

With probability p set x∗ ← x′′, f ∗ ← f (x′′) and goto 1,
and with probability p − 1 set k← k + 1;

end
end
Stop. Point x∗ is an approximative solution of the problem.

Figure 3: The Gauss-VNS method for FTSP.

out on a single core of the Intel Core 2 Duo 2.67 GHz PC with 4 GB RAM under
Windows XP operating system. The algorithm was coded in C programming
language.

For experimental testing, the instances from [5] were used. The stopping
criterion for all the algorithms was the maximal number of iterations itermax = 100
for small size (number of vertices vmax = 5, 10 and number of edges emax = 10) and
medium size (vmax = 10, 30 and emax = 50, 100) instances. For large size instances
(vmax = 30, 50, 100 and emax = 200, 500), 100 iterations resulted in large CPU
times, so for these instances the stopping criterion was set to CPU time limited
to ttot = 1000s. For GVNS and VNS LS1 algorithms, the other parameter values
were: kmin = 2, kmax = 20, p = 0.4. These are the same values used for testing VNS
in [5]. The results are summarised in Table 1. On the other hand, for Gauss-VNS,
Gauss-GVNS and Gauss-VNS-LS1 algorithms, the following parameter values
were used: kmin = 1 (since the parameter k represents the index of the element
from the set of predefined variances), kmax = 10 and the set of variances σ =
0.01, 0.05, 0.10, 0.20, 0.50, 1.00, 2.00, 5.00, 10.00, 50.00. The results of these three
modifications are presented in Table 2. Because of the stochastic nature of the
VNS algorithm, each VNS modification was run 20 times for each instance.

Table 1 is organized as follows. In the first column, labeled as ”Inst.” , the
test instance name is given. It contains the information about the number of
vertices, the number of edges and the ordinal number of the instance of that type,
respectively. In the second column, labeled as ”LB”, the elementary lower bound
for that instance is given, calculated as described by (3). The third column, labeled
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as ”opt”, contains the optimal solution value found by CPLEX and/or Gurobi on
proposed ILP problem formulations from [6] and [7]. If CPLEX or Gurobi did
not produce an optimal result, the symbol ”-” is written. The next five columns
contain the results and data obtained by VNS algorithm presented in [5]: the
column labeled as ”VNSbest” contains the best objective function value found by
VNS algorithm in 20 runs; next two columns, t and ttot, contain average execution
time used to reach the final VNS solution and average total execution time given
in seconds; column labeled as ”err” contains an average relative percentage error
of objective function solution values, defined as err = 1

20

∑20
i=1 erri where erri =

100 ∗ VNSi−VNSbest
VNSbest

, and VNSi represents the VNS result obtained in the i-th run, i =
1, ..., 20; column ”sd” is standard deviation of erri, i = 1, ..., 20 obtained by formula

sd =
√

1
20

∑20
i=1(erri − err)2. The next five columns contain the data obtained by the

GVNS algorithm presented in the same way as for the VNS algorithm. In the last
five columns the results obtained by VNS-LS1 algorithm are presented.

Table 2 is organized in the similar way as Table 1, containing the results
obtained by Gauss-VNS, Gauss-GVNS and Gauss-VNS-LS1 algorithms.

In the columns containing the best objective function value, if the obtained
result is equal to the proved optimal result from the third column, it is marked
as ”opt”. If the the optimal result of the problem is not known and the obtained
result is equal to LB, it has to be the optimal result of FTSP. In this case, the
obtained result is marked as ”LB opt”.

As it can be seen from Tables 1 and 2, for small size instances, all six modifi-
cations reached all optimal solutions in each of 20 runs (err = 0 and sd = 0) very
fast.

For medium size instances, all six modifications also reached all optimal so-
lutions, but the best average performance had GVNS and Gauss-GVNS. GVNS
and Gauss-GVNS gave the best average results since both algorithms reached all
optimal solutions in all 20 runs for all instances. In total, VNS performed as the
worst algorithm, obtaining the same result in 20 runs for 17 out of 20 instances.
Gauss-VNS, VNS-LS1 and Gauss-VNS-LS1 had better average results than VNS
since they reached all optimal solutions in all runs for 19 out of 20 instances.
Comparing the total execution times, GVNS and Gauss-GVNS are insignificantly
slower than VNS and Gauss-VNS, and VNS-LS1 and Gauss-VNS-LS1 are the
fastest.

For large size instances, all five new modifications performed better than VNS.
VNS reached 7 optimal solutions, from which the optimality for three instances
follows from its equality to the elementary lower bound. On the other hand, all
five other modifications reached 9 optimal solutions: four of them are equal to the
proved optimal solution from the third column, and other five have values equal
to LB. For other six instances, for which the optimal solutions are not known, all
five modifications reached better solutions than VNS in two cases ( f tsp 30 500 3
and f tsp 100 500 2). For the instance f tsp 30 500 3, Gauss-VNS obtained better
solution (Gauss − VNSbest = 128) than VNS (VNSbest = 135), but the smallest
value was obtained by other four modifications (GVNSbest = VNS − LS1best =
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Gauss − GVNSbest = Gauss − VNS − LS1best = 127). Comparing the quality of
obtained results, Gauss-VNS was better than VNS with values err and sd equal to
zero for 10 out of 15 instances, while for VNS this was obtained for 8 out of 15
instances. GVNS reached the same solution in 20 runs for 11 out of 15 instances,
and Gauss-GVNS for 10 out of 15 instances. VNS-LS1 and Gauss-VNS-LS1 were
the best, obtaining the same solution in 20 runs for 14 out of 15 instances.

Since the algorithm pairs VNS and Gauss-VNS, GVNS and Gauss-GVNS, VNS-
LS1 and Gauss-VNS-LS1 have the same local search procedure, it is interesting to
compare the results obtained by each pair. As it can be seen from discussion above,
Gauss-VNS performed better than VNS, obtaining better results for the large size
instances, and better average performance for medium and large size instances.
On the other hand, GVNS, Gauss-GVNS, VNS-LS1 and Gauss-VNS-LS1 obtained
the same or similar results, all better than VNS and Gauss-VNS.

5. CONCLUSION

In this paper new modifications of VNS approach for solving the discrete File
transfer scheduling problem were presented. In order to obtain better solutions
in a small neighborhood of a current solution, we implemented two new local
search procedures: Variable Neighborhood Descent, and swapping two adjacent
elements. In order to apply the continuous optimization method (Gaussian Vari-
able Neighborhood Search) to solve FTSP, mapping of continuous set of feasible
solutions into a finite set is performed, and the weight solution representation
is developed. Such representation enables the continuous optimization methods
to be used, which do not require the differentiability of objective function. Since
Gauss-VNS method is proved to be successful in continuous optimization prob-
lems, it was applied to discrete FTSP. Previously described local search procedures
could also be used with weight solution representation. Numerical experiments
showed that the results obtained by the Gaussian modifications are comparable
with the results obtained by standard VNS based heuristics developed for combi-
natorial optimization. In some cases the Gaussian modifications gave even better
results.

Future research may contain automatic estimation of range of parameter σ for
Gauss-VNS, as well as the usage of Gaussian distribution for some other discrete
optimization problems.
Acknowledgement: This research was supported by Serbian Ministry of Educa-
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[11] Mladenović, N., and Hansen, P., “Variable neighborhood search”, Computers & Operations
Research, 24(11) (1997) 1097-1100.

[12] Mladenović, N., Todosijević, R., and Urośević, D., ”An efficient general variable neighborhood
search for large travelling salesman problem with time windows”, Yugoslav Journal of Opera-
tions Research, 22 (2012) 141-151.
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